Piedmont Area Transportation Study
March 2008
Acknowledgements

Piedmont Area Transportation Study Partners
Scotty Green (Buckhead Community Improvement District, Executive Director)
Denise Starling (Buckhead Area Transportation Management Association, Executive Director)

Advisory Working Group
Property Owner Representatives
John Lundeen (Coro Realty Advisors, Vice Chairman of Buckhead CID (Segment 1))
David Allman (Regent Partners, Chairman of Buckhead CID (Segment 1))
Ted Leithead (Cousins Properties (Segment 1-2))
Claude Petty (PC Associates, member of Buckhead CID (Segment 1))
Bailey Pope (Dawson Company, Lindbergh Area Representative (Segment 4))
Jack Rhodes (Carter Real Estate (Segment 4))
Richard Lewis (Bones Restaurant (Segment 2))

Resident Representatives
Anthony Niviera (NPU-B Chair of Zoning Committee; resident of Peachtree Heights)
Jeff Shell (NPU-B Chair; resident of Peachtree Park)
Sally Silver (NPU Chair of Development and Transportation Committee)
Andrea Bennett (NPU-B representative from North Buckhead)

Employer Representatives
Mike Lawings (Wellpoint, Inc. (Segment 1))
Charis Epperson (Rollins, Inc. (Segment 5))

Elected Officials
Howard Shook
(Atlanta City Council representative District 7)
Clair Muller
(Atlanta City Council representative District 8)

Agency Advisory Committee
Georgia Department of Transportation (GDOT)
Atlanta Regional Commission (ARC)
Georgia Regional Transportation Authority (GRTA)
City of Atlanta, Planning
City of Atlanta, Public Works
State Road and Tollway Authority (SRTA)
Metropolitan Atlanta Rapid Transit Authority (MARTA)
Atlanta Police Department, Zone 2
Buckhead Coalition
Buckhead Business Association

Consultant:
Kimley-Horn and Associates, Inc.
Jeff Smith/Jennifer Hunter, Project Manager
Ed Ellis, Principal in Charge
Roger Henderson, Senior Project Planner
Sean Johnston, Design Engineer
Ryan Mackey, Designer
Matt Roe, Project Analyst/Designer
Stuart Day, Project Analyst/Designer
Ashley Poplin, Renderings
Julie Barker, Graphic Design

The appendix for the Piedmont Area Transportation Study is a separate, bound document.
Table of Contents

- Executive Summary .. 1
- Introduction .. 5
- Existing Deficiencies ... 15
- Existing Conditions .. 23
- Future Conditions ... 53
- Recommendations ... 61
- Future Conditions ... 89
- Opinion of Probable Construction Cost 99
- Funding Sources ... 101
- Action Plan ... 109
- Conclusion .. 121
Executive Summary

Piedmont Road, Georgia State Route 237, is one of Atlanta’s most important north-south corridors, connecting the State Capitol with significant residential, business and visitor destinations. This study focuses on the portion of Piedmont Road located in Buckhead, where it carries up to 45,000 vehicles on a typical weekday, often operating under very congested conditions. With more than 13,000 new residents and 34,000 new jobs projected to move to Buckhead in the next 25 years, the already congested corridor will be clogged with traffic well beyond normal commute hours unless action is taken.

Approximately 450 Buckhead residents, commuters, employers, business leaders, and community leaders came together to tackle Piedmont’s issues head on, creating a shared vision for the Piedmont Road of the future. The result is a $200 million plan encompassing 47 projects that, in combination, achieve “mobility balance” by improving the corridor to function more smoothly for motorists as well as transit riders, pedestrians, and cyclists. This report, the Piedmont Area Transportation Study, captures the shared vision for a new Piedmont Road and shows how a combination of public and private investments can be used to realize it.

Purpose of the Plan

The Piedmont Area Transportation Study was conducted to create a 20-year plan that converts the Piedmont Corridor from an obsolete traffic artery to a comprehensive transportation connection and asset for the community. No longer secondary to Peachtree Road, the Piedmont Road envisioned in this plan will meet the standard for excellence that typifies Buckhead while preserving the unique character of the varying segments of the corridor. This study builds on the work done in 2001 through the Atlanta Regional Commission’s Livable Centers Initiative that identified Piedmont Road and Peachtree Road as Buckhead’s major corridors. This study also addresses measures to improve the corridor as developed by the Governor’s Congestion Mitigation Task Force.
Current Conditions

Traveling along Piedmont Road in Buckhead during either the morning or afternoon rush hours can be a frustrating, gridlocked experience. A number of factors contribute to Piedmont’s current state including:

- Frequent congestion on Georgia 400 causes drivers to use Piedmont as an alternate southbound route during the afternoon rush hour.
- With no southbound to northbound connection between Georgia 400 and I-85, motorists must use Piedmont and other local surface streets to complete the transition.
- Alternatives to the car to access Buckhead are not attractive - in terms of costs, frequency, and convenience.
- Alternatives to the car to circulate within Buckhead are not attractive and are very limited, with the exception of the “buc,” which is popular, but expensive to operate.
- The existing street grid does a poor job of distributing traffic that is circulating within Buckhead along the Piedmont Corridor.
- Several intersections throughout the corridor are bottlenecks in the system, causing severe delay throughout the corridor.
- The roadway was not designed to handle the uneven flow of traffic, which is significantly heavier in the southbound direction, especially during the afternoon rush hour.
- Limited local funding sources exist to fund improvements in a large part of the area.
- Planned development could outpace the capacity of supporting infrastructure.

Future Conditions

Left unimproved, Piedmont Road will soon experience significant traffic delays throughout the day.

- The area has experienced three percent growth in traffic over the last six years. The Atlanta Regional Commission forecasts that the Buckhead area may experience an increase in population of 40 percent over the next 25 years. This would accelerate the traffic growth trend as experienced in recent years.
- Four of the 22 study intersections along the Piedmont Corridor will operate under failing conditions during most of the day (not just rush hours) by 2012. By 2027, one third of the study intersections will operate under failing conditions, causing congestion to spread further throughout the corridor.
- Average travel times will increase from 18 minutes to 27 minutes in the afternoon rush hour between 2007 and 2027.
- Average speeds during the afternoon rush hour will decrease from 11 to 7 mph, significantly lower than the current posted speed limits of 35 and 45 mph.

Recommendations for Improving Piedmont

The Piedmont Area Transportation Study recommends 47 projects that work together to produce meaningful transportation improvements along the corridor. The recommendations represent more than $200 million in construction projects, producing “mobility balance” by weaving together transit, pedestrian, bike, and roadway improvements. Highlights of the recommended projects are as follows:

- Construct major roadway connections that keep commuter traffic on the highways and interstates.
 - Complete the I-85/Georgia 400 interchange by constructing ramps from I-85 southbound to GA 400 northbound and from GA 400 southbound to I-85 northbound
- Minimize traffic “choke points” by improving traffic flow through intersections and accommodate heavier southbound traffic.
 - Create dedicated left-turn lanes at all major intersections to increase capacity and improve safety
 - Widen portions of Piedmont Road to create three lanes in each direction with exclusive left-turn lanes
 - Re-time signals every two to five years to reflect new development and changing traffic patterns
 - Where widening is not an option, convert lane uses to gain additional southbound capacity with dedicated left-turn lanes
- Enhance transportation alternatives to encourage additional use for access to Buckhead.
 - Establish express bus service directly to several employment centers in Buckhead from Cobb, Gwinnett, and DeKalb counties
 - Increase frequency of MARTA rail and bus service
 - Complete the I-85 HOV interchange to create ramps to/from I-85 South, facilitating faster trips for express bus service and other multi-passenger vehicles
- Enhance transportation options for circulating within the Buckhead community.
 - Extend the “buc” shuttle service to a larger area of Buckhead
 - Improve pedestrian safety by widening buffers and sidewalks, and by improving pedestrian crossings
 - Design roadway sections to accommodate the future inclusion of bike lanes as bridge infrastructure is replaced, right-of-way is acquired, and development is approved
 - Construct queue jumper lanes that allow buses a head-start when traffic signals turn green

The Planning Process

To ensure that the Piedmont Area Transportation Study created a vision representative of the entire business and residential community, the Buckhead Community Improvement District (Buckhead CID) and the Buckhead Area Transportation Management Association (BATMA) followed a
rigorous process for public involvement. The study team also gathered extensive data and tested its recommendations using industry accepted procedures to ensure that the final product is a cohesive, effective plan for improving the Piedmont Road Corridor.

- Through 39 public meetings, approximately 450 residents, business owners, and commuters shaped the effort, developed the guiding principles for the study, shared their perceptions of existing problems and provided their ideas on how to correct them. Regular updates were provided via email to more than 11,000 members of the business and residential community.
- The study team analyzed a variety of data including traffic volumes, congestion, delay, intersection levels-of-service, and crash records to determine the deficiencies in the corridor.
- The study team met with property owners to understand their future development plans.
- Future conditions for the corridor were projected based upon historical and projected demographic, development, and traffic data provided by the Georgia Department of Transportation and the Atlanta Regional Commission that was adjusted based upon local knowledge of planned development.
- The study team developed an initial set of recommendations by analyzing future traffic volumes and patterns using traffic modeling software.
- After testing the impact of initial recommendations, the study team met with stakeholders and the general public to seek feedback. Several recommendations were altered based on community input.

From Plan to Reality
The Piedmont Area Transportation study is not only a 20-year vision for Piedmont Road – it is also a plan for immediate action. Portions of the plan can begin implementation within the year while others will be presented to state and regional transportation agencies for longer term funding consideration. The first step toward implementation will happen in early 2008 as the board of the Buckhead CID reviews the plan and develops its priorities based on feasibility and cost effectiveness.

One key component in moving the study from plan to reality is the study team’s close coordination with the City of Atlanta throughout the planning process. The plan was developed to fit directly into the Connect Atlanta Plan currently under development by the City, giving them a head start on work in Buckhead.

Ultimately, the vision for Piedmont Road is to transform it from Buckhead’s “workhorse” street into a more attractive and efficient roadway that meets the community’s standard of excellence and faces the challenges of the growing Buckhead area in a unique way.

The challenge is to maintain the momentum generated by the study’s public engagement effort and to aim for rapid implementation of several of the early action items while taking the necessary steps to begin design work on a wide range of projects. In this way, the Buckhead community sits at the gateway to securing outside funding and moving this vision from a plan to reality.
1.0 Introduction

1.1 Background

Piedmont Road (Georgia State Route 237) is one of Atlanta’s most important north-south corridors, connecting the State Capitol with important residential, business and visitor sites. It links Buckhead with Midtown and Downtown Atlanta. It parallels the North line of MARTA’s rail system, with nine stations located within three-quarters of a mile of Piedmont Road/Piedmont Avenue including the hub of the rail system – the Five Points station. This study focuses on the portion of Piedmont Road located in Buckhead, where it carries up to 45,000 vehicles on a typical weekday, sometimes operating under very congested conditions. With more than 13,000 new residents and 34,000 new jobs projected to move to Buckhead in the next 25 years, the already congested corridor will be clogged with traffic well beyond normal commute hours unless action is taken. With a strong commitment to progressive development, growth in Buckhead represents an opportunity to capitalize on proven methods to reduce traffic burdens including all of the following and more:

- vertical mixed-use buildings
- multi-family residential homes in walking distance of high-quality transit
- vibrant streetscapes and street retail stores that entice people to walk
- balanced street system that allows access without letting cars dominate the landscape
- proactive employer-based enticements to lure office workers out of single-occupant cars
- a commitment to succeed
Fresh on the heels of its successful completion of the first installment of the Peachtree Road transformation from Maple Drive to GA 400, the Buckhead Community Improvement District (Buckhead CID) and the Buckhead Area Transportation Management Association (BATMA), led by an Advisory Working Group consisting of residents, developers, employers, and property owners, is sharing this study of Piedmont Road to solicit help in changing the status quo on Piedmont Road. The organization’s histories of progressive problem solving, having been the recipient of several transit, pedestrian, and transportation demand management awards given by MARTA, PEDS, and the International Association of Business Communicators over the past several years, provided the all-inclusive guidance and organization to bring together approximately 450 Buckhead residents, commuters, employers, business leaders, and community leaders who created this study’s vision for Piedmont Road. This report, the Piedmont Area Transportation Study, captures that vision and shows how public and private investments when added together can be used to realize this community vision.

1.2 Purpose and Approach of this Study

The purpose of this study is to recommend changes affecting all modes of travel within and around the Piedmont Road corridor and surrounding areas that specifically address the evolving needs of the growing community and region. The study commenced in March 2007 as a partnership between the Buckhead CID and BATMA who identified the need to take a proactive look at the transportation issues that are facing the Buckhead Community’s future. Study goals defined early in the process are as follows:

- Identify measures to improve traffic mobility
- Enhance the pedestrian environment
- Create better access to public transit
- Initiate intra-district transportation alternatives
- Encourage better integration of land uses
- Improve linkages to the region’s automobile, transit, and bicycle network.

The approach taken to conduct the study was coupled between ongoing input from members of the community as well as a thorough technical analysis. Data collected through the corridor was used to create an existing conditions model and deficiencies were identified. Future volumes were increased based on historical and projected future growth in the area. These volumes were input into the model and projected future deficiencies were identified. Improvements addressing the identified deficiencies in the transit, pedestrian, bicycle, and roadway systems were then recommended and presented to the public through a series of public meetings. The final list of recommended projects is a reflection of the technical analysis as well as application of the response from stakeholders.

In order to conduct this study in the context of the recommendations of previous work, past planning studies and documents were also reviewed. Several of the documents reviewed are as follows:

- Lindbergh Area Project Concept Report (STP-7626-00(320)), Georgia Department of Transportation (1995)
- Atlanta Commuter On-Street Bike Plan, City of Atlanta (1995)
While the above studies all address portions of Buckhead, each consists of different study areas and concentrates on different travel modes. Ideas that transcend most or all of the studies are the importance of preserving neighborhoods, the desire to increase street front retail, the desire to improve and create pedestrian and bicycle facilities, and the need to increase traffic capacity by performing projects such as widening portions of the area’s roadways and the addition of turn lanes in several locations. While the recommendations of this study were created by an independent public engagement process and through a technical analysis of roadway operation based on current traffic count data, the ideas and recommendations presented in each of these studies were strongly considered when making the recommendations.

1.3 Community Vision

The transportation plan presented in this study was developed through a comprehensive community involvement process held from March 2007 to January 2008. The process included input from neighborhood groups from over eleven neighborhoods, business and property owners, commuters, City of Atlanta officials, bicycle and pedestrian advocates, transit service providers, and other parties with interests in the corridor.

Early in the study, meetings were held with various groups of stakeholders to prioritize a list of guiding principals. These principles were used to guide the development of recommended projects. In ranked order, from higher to lower priority, they are:

1. Preserve property values and character of existing residential neighborhoods
2. Increase transportation and mobility options in the study area by providing more opportunities for walking, cycling, and transit use
3. Balance traffic flows and eliminate congestion hotspots
4. Provide adequate and appropriate access to businesses and neighborhoods
5. Increase connectivity within the study area and to other parts of the region
6. Manage and optimize the use of the existing transportation system
7. Aggressively pursue high-value transportation improvements
8. Improve safety for users of all transportation modes
9. Improve aesthetics of the public realm
10. Provide opportunities for high-quality redevelopment where appropriate
11. Create a sense of continuity along the Piedmont corridor

The guiding principals above created a vision for the study and guided the development of the 47 recommended projects. Piedmont Road will be transformed into a complete street with an appropriate balance between competing interests in moving people and vehicles. It will carry transit patrons safely, comfortably, and conveniently with quality amenities at strategically located bus stops and rail stations. Pedestrians and bicyclists will be able to safely and conveniently travel along and across Piedmont Road. Cars and trucks will be able to access areas along the corridor with a reasonable and consistent level-of-service. The quality of traffic flow will change from a haphazard stop-and-go condition into a more fluid routine with a degree of predictability in knowing how long a trip will take to make.

1.4 Study Area

The area chosen for study includes the 3.4 mile Piedmont Road corridor from Roswell Road to Interstate 85, including the portion of Roswell Road from Powers Ferry Road to Piedmont Road. The area along and in the vicinity of this corridor consists of pockets of densely packed development, along with several areas with low density commercial parcels and single family neighborhoods. There are over five thousand hotel rooms,
1,400 retail outlets, and 70,000 residents in areas within reach of the corridor. Due to the corridor’s vast differences in character and physical attributes the study area is divided into five segments as described below.

- Segment 1 – Roswell Road from Powers Ferry Road to Piedmont Road (0.1 miles) and Piedmont Road from Roswell Road to Peachtree Road (1 mile)
- Segment 2 – Piedmont Road from Peachtree Road to Pharr Road (0.5 miles)
- Segment 3 – Piedmont Road from Pharr Road to Sidney Marcus Boulevard (0.8 miles)
- Segment 4 – Piedmont Road from Sidney Marcus Boulevard to Lindbergh Drive (0.35 miles)
- Segment 5 – Piedmont Road from Lindbergh Drive to Interstate 85 (0.6 miles)

1.5 Public Engagement Strategy

From its inception, the Piedmont Area Transportation Study was conceived of as a community-based inclusive effort. The Buckhead CID and the BATMA jointly developed a scope of services and convened a consultant selection committee consisting of business, property owner, and residential interests. The public engagement plan in each consultant proposal was heavily weighted and the scope of services for the team selected was modified to reflect the strengths of the public engagement plan presented in all proposals received.

1.5.1 Study Leadership

Once the consultant team was selected, an Advisory Working Group was formed to oversee the study. The group was specifically developed to provide a balanced perspective representative of the community as a whole. The group was comprised of seven property owners, four resident representatives, two elected officials, and two employers. It is important to note the inclusion of employers – this group was specifically sought out due to early recognition that commute traffic impacts were a significant factor in the corridor and that commuter interests are vastly different from residents and property owners. The interest group is rarely represented in community planning efforts and balancing the differing perspective and needs poses quite a challenge.

In addition to the Advisory Working Group, an Agency Advisory Committee was established. This group, comprised of all regulatory and advocacy agencies likely to be interested in and involved in implementation, was charged with providing a realistic view of the funding environments to ensure recommendations were consistent with agency desires and best positioned for implementation. Representation on this committee included ten public and private agencies.

1.5.2 General Public Engagement

From the outset, public engagement was an essential approach in the study. While the Advisory Working Group was structured to provide a balanced perspective necessary to engage the broader community at key points in the study as well as to provide a thorough outreach effort that offered a number of opportunities for input as well as a variety of information dissemination channels.

The strategy was to engage the broader public at two main points in the study including:

1) At the beginning to shape the study – by defining the guiding principles, to identify the current deficiencies, and provide ideas for potential solutions.
2) Once the list of recommendations was formed, to provide reaction and input to the proposed recommendations prior to finalization.

To ensure that the broader public was kept abreast of the study’s progress, study updates were provided through a series of BLOQs, continued website presence, monthly reports to the Buckhead CID Board of Directors and to the BATMA Board of Directors. The monthly newsletter distribution included approximately 6,000 direct contacts for commuters and another 5,000 direct contacts for residents.

1.5.3 Calendar of Events

March 1, 2007 – Kick-Off Meeting – An initial meeting was held with both the Advisory Working Group and the Agency Advisory Committee to begin the study effort. At this meeting, the study goals, purpose, approach, and roles of the groups were established and reviewed. With the groups in agreement, the consultant team was released to begin work. A total of 30 people attended this meeting including representatives from almost all agencies.

April 10 – Round 1 Public Meetings – The first round of public meetings was conducted. Invitations were sent to every property owner of record with the City of Atlanta Tax Assessors office (600 individual property owners), emails announcing the meetings were distributed to an estimated 200 stakeholders directly and to an additional 5,000 through neighborhood communications channels. Information was also sent out to more than 6,000 recipients through BATMA’s monthly newsletter. A total of 92 people attended these meetings. This series consisted of seven separate meetings, each representing a different geographic section of the corridor or interest (resident and employer), in an effort to target discussions to specific areas. The meetings were used to educate the public about the proposed process of engagement, to discuss existing conditions, to understand perceptions of the corridor deficiencies, and to establish the guiding principles that would lead the entire study effort. The guiding principles developed from these meetings, as listed in Section 1.3, strongly influenced the entire study and in fact became the litmus test for the development of the recommendations included.
March – April 2007 – Individual Property Owner/Neighborhood Meetings – Individual meetings with property owners were held as part of the initial conditions research in order to develop an understanding of development plans underway that would impact the future traffic volumes and patterns of the corridor. Meetings were held with approximately 11 property owners and 3 neighborhood groups.

May 1 – Advisory Working Group /Agency Advisory Committee Meeting #2 – A joint meeting of the Advisory Working Group and Agency Advisory Committee was held to provide committee representatives with an overview of the input received from the Round 1 public meetings conducted the previous month. The consultant team reviewed the problems and issues identified by stakeholders and also presented the guiding principles for the study as determined and ranked by the stakeholders. The second part of the meeting was dedicated to those issues which required agency input and coordination including: Georgia 400 to I-85 Interchange, the Piedmont Road/East Wesley Road intersection, Lindbergh widening project, consolidation of Lindbergh Drive, Express bus service, the Miami Circle intersection, the Buckhead Loop intersection and the Roswell Road/Habersham Road intersection. A total of 24 people were in attendance at this meeting.

June 20 – East Wesley Road/Darlington Road/Baranco Intersection Meeting #1 – Through conversations with stakeholders, concerns over the Darlington Road/East Wesley Road/Baranco dealership intersection were identified as an area in need of further investigation. The study team met with a group of approximately 10 neighborhood representatives as well as the Baranco dealership owners. The goal of the meeting was to discuss the issues for the intersection, its role on the broader corridor project, and to help develop consensus for a solution. At this meeting, the consultant presented its recommendations for the intersection and in response the neighborhood representatives made the team aware of several alternative scenarios to be considered and requested additional analysis. The study team agreed to review the alternatives and provide an analysis of the options back to the group for consideration at a second meeting.

July 20 - Advisory Working Group Meeting #3 – At this meeting of the Advisory Working Group, the consultant team reviewed the corridor deficiencies noted in the Round 1 stakeholder meetings and discussed their list of initial recommendations with the group. The group was asked for input regarding any issues or concerns with the proposed recommendations. The group released the recommendations for presentation in the Round 2 Public meetings. Attendance at this meeting totaled six people, including mostly residential representatives and one property owner.

July 25 – Advisory Working Group Meeting #3 – At this meeting the consultant team reviewed the corridor deficiencies noted in the Round 1 stakeholder meetings and discussed their list of initial recommendations with the group. The group was asked for input regarding any issues or concerns with the proposed recommendations. The committee released the recommendations for presentation in the Round 2 public meetings. Eight group members were in attendance at this meeting including representatives from SRTA, ARC, City of Atlanta planning and public works, and GDOT.

August 8 – Darlington Road/East Wesley Road/Baranco dealership/Peachtree Park Intersection Meeting #2 – The second and final meeting to discuss the Darlington intersection included the study team with 15 neighborhood representatives. The study team presented six options for consideration and reviewed each in detail highlighting the pros and cons of each. The preferred option presented was that which included converting Darlington Road to right-in/right-out operation and reconfiguring Piedmont Road to a cross-section consisting of three southbound lanes and two northbound lanes with exclusive left-turn lanes provided for East Wesley Road and the Baranco car dealership. The preferred option included reconfiguring the intersection geometry to line up the Baranco driveway with East Wesley Road and maintain the signalization. Concerns were raised and the study team indicated that the concerns would be taken into consideration in conjunction with the study goals and comments from the remainder of the study scope.

September 4 and 6 – Round 2 Public Meetings – Approximately 80 people attended a series of meetings each of which focused on different corridor segments and user groups. In this meeting the consultant team presented their findings on deficiencies in the corridor and the initial recommendations for improvements in the corridor. Each attendee received a comment form to help the study team prioritize the recommended projects. Attendees identified the most positive aspects of the plan, missing elements from the recommendations, and any recommendations they opposed.

October 3 – Roswell Road/Habersham Road Intersection Meeting – The initial recommendation for the realignment of Piedmont Road at Roswell Road presented in the September Round 2 Public Meetings sparked a great deal of controversy with several neighborhood groups in the area. These groups requested a meeting with the consultant team to discuss the recommendation specifically and to have the opportunity to present their concerns as well as ideas for potential solutions. Approximately 12 people attended this meeting including all adjacent neighborhoods as well as the City Council representatives for both impacted districts and the at-large council member. The neighborhood organizations presented several ideas which the consultant team analyzed in further detail. Finding that none of the suggested alternative recommendations performed well without transgressing the problems to streets outside the study area, it was determined that the long-term recommendation to realign the intersection would be removed from the report and the intersection issues would be presented to the City of Atlanta for system analysis in the Connect Atlanta Plan.

October 22 – City of Atlanta Coordination Meeting – This meeting included six representatives from the study team, the City of Atlanta’s transportation planning department and the consultant team recently selected to conduct the Connect Atlanta Plan for the City. In this meeting all issues requiring further analysis by the City were raised and discussed. Topics covered included bike route designation, bus stop spacing and design standards, rail/bus service enhancements, queue jumper lanes, streetscape standards, the Buford Highway/I-85 connection, the Miami Circle connection to Canterbury Road/Burke Road, side-street maximum signal timing policy, Flexcar, the Habersham Road/Roswell Road intersection, SPI changes, and parking charge requirements.
October 23 – Joint Advisory Working Group and Agency Advisory Committee Meeting #4 – A joint meeting of the Advisory Working Group and Agency Advisory Committee was held to review feedback received at the Round 2 public meetings held earlier in the month. The discussion included a review of comments and concerns regarding the recommendations, revisions to the recommendations resulting from the input, and an overview of the proposed format for the public meetings that would be used to release the final recommendations. Committee members raised concerns about triple left turns, coordination with the Buford Highway Bus Rapid Transit program, and the need to link local traffic observation with the regional Intelligent Transportation System (ITS) architecture. Attendance included 12 group members representing SRTA, ARC, City of Atlanta (council and staff), MARTA, North Buckhead Civic Association, NPU-B, the Buckhead Coalition and the development community.

November 28 – Final Public Meetings: Commuter and Resident – Two final public meetings were held to release the final recommendations for the study to the broader public. Comments received at these meetings were considered by the study team and several modifications to the recommendations were made. Following is a description of each meeting:

Commuter/Employer Meeting – This meeting, held during lunch with special transportation service provided to and from the meeting site using the “buc” shuttle, focused on the needs of commuters and employers. The presentation included an overview of the study process, highlights of projected growth in the area, and recommendations that would impact their commute to Buckhead. A total of 42 people attended this meeting. Attendees were provided with a survey to complete and return to ensure their comments were recorded.

Resident Meeting – This meeting, held in the evening, focused on area residents. The open-house style meeting included display boards outlining all study recommendations. Study team staff members discussed individual recommendations with attendees in a series of one-on-one and small group discussions. A total of 66 people attended this meeting and all attendees were provided a survey to help ensure their comments were recorded.

February 2008 – Advisory Working Group and Agency Advisory Committee Meeting #5 – A joint meeting of the steering and Advisory Working Group members was held to review the comments received at the November public meetings and to discuss changes made to the recommendations as a result of the feedback. In this meeting, the study report was released and transmitted to all agencies.
2.0 Existing Deficiencies

The Piedmont Road corridor suffers from a multitude of deficiencies for all user groups. These deficiencies are a result of local factors as well as regional issues that have been left untouched for decades because of the lack of funds for implementation of transit, pedestrian, bicycle, and congestion mitigation projects. The list below describes the most prevalent problems with the corridor and its surroundings.

2.1 Regional Deficiencies

Southbound Freeway Congestion

Traffic volumes along Piedmont Road vary greatly between the northbound and southbound directions. In the southern portion of the study corridor, on a daily basis over 30 percent more vehicles travel in the southbound direction than the northbound direction. It is believed that this imbalance of traffic is being generated by congestion occurring along southbound Georgia 400 (GA 400). This congestion stretches sometimes as far as I-20, nearly nine miles to the south of Buckhead, and is the result of heavy traffic volumes along I-75 and I-85. The congestion causes many southbound drivers along GA 400 to “ball out” and exit at the Buckhead Loop and Sidney Marcus Boulevard interchanges. Many of these motorists then use Piedmont Road as a means to travel into Midtown and Downtown Atlanta, or to access Buford Highway or re-enter I-85 further to the south.

Traffic volume data suggest that on an average weekday, approximately 20 percent more vehicles exit GA 400 at the Buckhead Loop and Sidney Marcus Boulevard during the afternoon rush hour than enter during the morning rush hour. This sends over 6,500 vehicles during an average afternoon peak hour southbound on Piedmont Road to avoid traffic congestion along GA 400 and I-85. This “ball out” creates an imbalance in the directional flow on Piedmont Road, with southbound lanes carrying 30 percent more traffic than northbound.

GA 400/I-85 Southbound to Northbound Ramps

Freeway ramps from I-85 northbound to GA 400 northbound and GA 400 southbound to I-85 southbound currently exist; however, no ramps exist to facilitate the movement from GA 400 southbound to I-85 northbound and vice versa. Motorists wishing to make this movement must use surface streets such as Sidney Marcus Boulevard, Buford Highway, and Cheshire Bridge Road to transfer between the two freeways.

Construction of these ramps has been planned for quite some time; however, efforts to make the ramps a reality continue to be hampered by delays and a lack of funding. A preliminary analysis...
conducted by GDOT forecasts 31,000 motorists each day will use each ramp. These vehicles would otherwise use surface streets such as Sidney Marcus Boulevard to make the transition.

Regional Transit Options

Currently, transportation options for workers living outside the city and commuting to the Buckhead community are very limited. The only regional transportation specifically serving the dense core of Buckhead is MARTA rail service which only reaches to locations in the proximity of I-285 and one GRTA Xpress bus route which travels between Discover Mills Mall in Gwinnett County and the Lindbergh Center MARTA station. No commuter rail exists within the region. MARTA rail does travel outside the dense core of the city, however, many Atlantans live in areas farther away from the city than the system serves. Individuals from areas farther out must drive to the farthest stretching rail stations (North Springs, Indian Creek, Airport, Hamilton E. Holmes, or Bankhead rail stations) to use MARTA to travel into and out of the city.

A license plate survey was performed during one day in July 2007 at the Piedmont Center and Securities Centre office developments to determine where workers live. Of the over 4,100 license plates recorded, the counties with the highest percentage of vehicles represented were Fulton (27%), Cobb (18%), DeKalb (16%), and Gwinnett (12%). The chart below shows the complete results.

As shown graphically (at left), one in three people commute to Buckhead from the northern portion of the region, especially Cobb and Gwinnett counties. Choosing to commute via express bus from these areas currently requires transferring to MARTA rail at the Arts Center MARTA station in Midtown Atlanta, then traveling to one of the Buckhead MARTA rail stations. The amount of time this commute alternative takes on a typical weekday is between 1 and 1 ½ hours from Town Center to Buckhead. The same commute by a single occupant vehicle, assuming an average travel speed as low as 30 miles per hour, is less than 45 minutes. Because of the convenience and time savings offered by driving their own vehicle, most commuters rule out express bus as a viable option. The chart below shows the difference in travel time to Buckhead from Town Center Mall via express bus versus single occupant vehicle.

City-Wide and Regional arterial network

Atlanta’s current system of freeways and arterials (including local and collector streets used as arterials) is not sufficient to efficiently move vehicles through a region of over five million people. The Piedmont corridor is situated in an area with few north-south or east-west oriented arterials and a poor street grid system to distribute traffic effectively. As the city and the region continue to grow, this forces any additional vehicles onto the already stressed facility.

Many two-lane roads which were originally designed to process low traffic volumes have evolved into being used as major arterials for the needs of commuters. For example, West Paces Ferry Road is a two-lane facility with a reasonable carrying capacity of just over 14,000 vehicles per day. With many commuters from the northwest portions of the region using this facility as an alternative to the congested freeways, the facility actually carries over 20,000 vehicles per day. Many facilities near the Piedmont Road corridor experience heavy traffic volumes like this, caused by the need for commuters to enter and leave the city with few travel options to the region’s freeway system (especially between I-75 and the Buckhead community).

2.2 Local Deficiencies

Local Transit Service

Two major transit services provide local transit within the Buckhead area: MARTA and the “buc.” MARTA provides city and regional transit through the corridor with rail and bus serving portions of Piedmont Road. The largest complaint from stakeholders is that MARTA rail and bus service is unpredictable and wait times (headways) are too long. The corridor consists of 32 bus stops, many of which serve only a few people each day. Amenities at bus stops are limited; most stops only consisting of a sign denoting the stop. Fabricated structures are provided at many stops; however, due to right-of-way constraints and narrow sidewalks, many of these structures obstruct the existing sidewalk. The graphic at left shows existing MARTA service in the area.
The “buc” is a free shuttle service which serves the northern portion of the corridor (north of Peachtree Road). Recent funding challenges have required reductions in service, which has resulted in longer headways. Workers in the northern activity center who participated in study meetings are particularly disappointed in recent cut backs to “buc” service in their area. The below graphic shows existing “buc” service in the area.

The lack of convenience, attractiveness, and usability of the available transit in Buckhead has very few people willing to trade in their car for transit.

Pedestrian Infrastructure
Pedestrians face unsafe and unattractive conditions along most of the corridor. Many portions of sidewalk are cracked and crumbled, with obstructions such as utility poles, and are directly adjacent to the roadway with no buffer from moving vehicles. Many crosswalk markings are faded or non-existent and medians prevent wheelchairs from maneuvering through some intersections. This creates a perception that vehicles “rule the road.”

The roadway network in the areas adjacent to the study corridor stems from Buckhead’s early growth as a suburb of Atlanta. Very few portions of the corridor consist of a street grid system, where streets cross frequently and create short blocks which allow for convenient pedestrian access and the ability to cross busy streets safely. This lack of a grid network creates conditions making it difficult for pedestrians to walk, sometimes even very short distances. In turn, city streets are often void of pedestrians, thus defining the area as “vehicle only.” All these factors make Piedmont Road an undesirable place to choose walking as a mode of choice.

Bicycle Infrastructure
Currently the only bicycle facilities provided in the vicinity of the study corridor are the bicycle lanes recently completed as part of the Peachtree Road Complete Streets project from Maple Drive to GA 400. Piedmont Road and most of its adjacent public roadways are very uninviting for bicycling due to heavy traffic volumes, high speeds, narrow lane widths, and on-street parking. The Atlanta Regional Commission (ARC) classifies Piedmont Road as a facility with “difficult conditions for bicycling.”

The limited amount of right-of-way constraints such as bridges, and insufficient dedicated funding for stand-alone bicycle projects have created an obstacle for implementation of dedicated bicycle lanes along Piedmont Road.

Existing Road Cross-Section
The existing cross-section of most of the study corridor (south of Peachtree Road) consists of three lanes in both the northbound and southbound directions. At most intersections, dedicated left-turn lanes are not provided, creating a situation in which the inside lanes are shared left-turn/through movement lanes. This creates several problems including high rear-end and side-swipe crash rates and reduced roadway capacity by almost one third of that in other parts of the corridor. As a result of the shared lanes, in recent years Piedmont Road has experienced a crash rate on average of 2.6 times higher than the state average, with almost one half of the crashes being rear-end.

Between Sidney Marcus Boulevard and Lindbergh Drive, the inside travel lanes become dedicated left-turn lanes, causing confusion for unfamiliar drivers and reducing the roadway’s capacity through this very congested portion of the corridor. Since the inside lanes become exclusive left-turn lanes,
Piedmont Road from Peachtree Road to I-85 also consists of a concrete median which has been degraded to more of a suggestion than anything else. That is, many motorists drive over the median. Due to the relatively small parcel sizes along this southern portion of the corridor, driveways are spaced very close together. The median does little to prevent motorists from turning left into or out of these driveways, causing angle crashes.

Intersection “Bottlenecks”

Several intersections create “bottlenecks” which cause heavy congestion throughout portions of the corridor. This is mainly due to the large vehicular volumes created by the lack of route alternatives as well as the increase of traffic associated with the growth in the region. Segments within the study corridor that contribute to the chronic congestion problem lie between the Roswell Road/Powers Ferry Road area to just south of the Piedmont Road/Peachtree Road intersection and on Piedmont Road from East Wesley Road/Darlington Road to just south of Lindbergh Drive. Intersection bottlenecks are located at Piedmont Road intersections with Roswell Road, Habersham Road, the Buckhead Loop, Tower Place Drive, Peachtree Road, Sidney Marcus Boulevard, Morego Drive, and Lindbergh Drive/Way. Conditions during the afternoon peak hours create the most congestion along the corridor, reducing the average speed along the 3.4 mile corridor to approximately ten miles per hour, compared with the posted speed limit of 35 to 40 mph.

Absence of Street Grid

The Buckhead area consists of surface, collector, and arterial roadways scattered throughout with little organization and lacking of a consistent street grid system. Well defined street grid systems provide high levels of accessibility and mobility by consisting of short block lengths that provide options for transit, short walking distances for pedestrians, low traffic volume streets for bicyclists, and alternative routes for drivers. The area’s lack of a defined street grid system contributes to the high volumes of traffic and congestion on the roadway and high traffic volumes at large intersections which are dangerous for pedestrians and bicyclists. Specifically, walking in some areas of the community is extremely difficult. One example of the lack of a grid occurs in the northern portion of the study area. There is no vehicular or bicycle connection between Roswell Road and Piedmont Road from Habersham Road to Peachtree Road. This creates a block that is almost one mile long.

The below graphic shows the lack of a successful street grid network along Piedmont Road within the study area just south of Pharr Road (left) and the presence of a strong street grid network along Piedmont Road in the Midtown Atlanta area.

Aesthetics

Overhead utilities clutter the space over Piedmont Road. A large transmission line travels along the entire corridor, alternating between the east and west sides of the roadway, with poorly screened power substations located at two separate locations. In several areas, specifically between Peachtree Road and Pharr Road and again between Sidney Marcus Boulevard and I-85, private parking lots line the road frontage. These areas also lack pedestrian scale and street front retail development.

Users of the corridor are bombarded with billboards and poorly maintained retail signs. These and other aesthetic attributes reinforce the notion that Piedmont Road is more of a “work-horse” than anything else, not intended for an aesthetically pleasing experience.
Several portions of the corridor, such as near the northern and southern activity centers, do have more consistent and attractive streetscape environments. However, other portions of the corridor have not received improvements during recent years. This creates a disconnected corridor and provides unattractive and difficult conditions for individuals wishing to walk between the areas with nicer aesthetics and well-kept streetscapes. This discontinuity between areas is even more noticeable to motorists who drive along the corridor.

Zoning Structure

Portions of the corridor lie within Special Public Interest (SPI) districts which provide an additional layer of zoning. These areas are located on the east side of Piedmont Road north of Peachtree Road as well as on both sides of Piedmont Road in the Lindbergh Center area. These overlay districts allow for common goals pertaining to aesthetics, attractiveness to all user groups, and unity of appearance in these locations as development occurs. Several areas that are prime for redevelopment are currently not within overlay districts (along the west side of Piedmont Road south and north of Peachtree Road), making them vulnerable to development that does not support the common goals of the corridor.

“We have worked with the City of Atlanta very closely throughout this process so that our recommendations can be put directly into the plan they create for the entire city. That gives Buckhead a fast start on making vital transportation improvements.”
3.0 Existing Conditions

The current state of Piedmont Road is the result of decades of substantial use without requisite investment in maintenance and improvement to the transit, pedestrian, bicycle, and roadway infrastructure along the corridor. Most bus stops lack protection from the elements, pedestrians must wade through high grass and tread on broken concrete, bicyclists must share the roadway with speeding vehicles or find other ways of getting around, and motorists endure long delays during much of the day. The corridor lacks a sense of place. The view from Piedmont Road is poor; tangled overhead wires, large metal poles, two power substations on the side of the road, narrow sidewalks with no protection from moving vehicles, billboards, and a linear slab of concrete in the median that virtually goes ignored. To identify what changes need to occur to address its current and future deficiencies, a complete understanding of all the existing issues is presented herein.

3.2 Corridor Inventory

The following sections discuss the physical characteristics of the corridor and attributes that are contributing to its declining performance as one of Atlanta’s most important corridors.

3.2.1 Activity Centers

The study corridor traverses multiple districts and neighborhoods, organized into two predominant activity centers. One is centered around the Buckhead MARTA station (northern activity center) and the other is centered around the Lindbergh Center MARTA station (southern activity center). Each activity center draws pedestrian, bicycle, transit, and vehicular traffic demand. Each has a mix of land uses within proximity such that walking between buildings is practical. Buildings and streetscapes are of high quality and entice people to walk.
The northern activity center consists of dense high-rise and mid-rise office, retail, and residential development with an activity center circulator shuttle bus, the "bus," which operates during peak traffic periods.

The southern activity center is a relatively new area of activity that began its rapid growth with the recent transit oriented development investment at the Lindbergh Center MARTA rail station. This activity center consists of mid-rise office, retail, and residential development.

By observation, the predominant mode of travel within and between activity centers appears to be the single occupant vehicle; however, a constant low volume flow of pedestrians traverse the corridor, mainly to access MARTA bus stops and rail stations. MARTA bus route 5 provides service between the centers and MARTA rail also serves both of the centers via the Lindbergh Center and Buckhead stations.

3.2.2 Corridor Location and Use

Piedmont Road is Georgia State Route 237 and is classified by GDOT as an Urban Minor Arterial, denoting its role in moving traffic within and through Buckhead. It is within a larger north-south network of roads, including:

- Georgia State Route 400 – an urban six-lane freeway
- Peachtree Road – an urban six-lane principal arterial
- Piedmont Road – an urban six-lane minor arterial
- Lenox Road – an urban four-lane minor arterial

Separated by only one-half mile, these four major streets and highways provide 22 lanes of traffic movement capacity traveling in a north-south orientation. Several major collector and arterial roadways intersect Piedmont Road at various locations. These intersecting roadways are as follows:

- Powers Ferry Road
- Roswell Road (US Highway 19 / State Route 9)
- Habersham Road
- Buckhead Loop / Lenox Road (SR 141)
- Peachtree Road (State Route 141)
- East Paces Ferry Road
- Pharr Road
- East Wesley Road
- Sidney Marcus Boulevard
- Lindbergh Drive (State Route 236, east of Piedmont Road)
- Interstate 85 (State Route 403)

The corridor is not identified by GDOT as a designated truck route.

3.2.3 Physical Conditions and Geometrics

The physical characteristics of the corridor vary greatly, especially between the northern and southern segments. North of Peachtree Road, Piedmont Road consists of asphalt pavement and two lanes each in the northbound and southbound directions. A limited number of driveway access points exist with a posted speed limit of 35 miles per hour. A large tree canopy exists on both sides of the corridor from Habersham Road to the Buckhead Loop. Left-turn lanes are provided at most major intersections and driveways and a center two-way left-turn lane stretches from the Buckhead Loop to Peachtree Road.

Segments south of Peachtree Road consist of concrete pavement and three travel lanes in both the northbound and southbound directions with a continuous four-foot wide, four-inch raised concrete median. Median breaks are provided at major intersections; however, the median is low enough that it is often crossed by vehicles making prohibited left turns into and out of driveways. Designated left-turn lanes are provided at Peachtree Road, Sidney Marcus Boulevard, and Morosgo Drive. The inside travel lanes at Sidney Marcus Boulevard and Morosgo Drive are designated as left-turn only lanes, reducing the roadway section to two through lanes in both the northbound and southbound directions at these intersections. Designated right-turn deceleration lanes are provided at Peachtree Road, Garson Drive, and several commercial parcels along the corridor.
Due to generally smaller parcel sizes south of Peachtree Road, there are numerous driveways. With the exception of a posted speed limit of 35 miles per hour just south of Peachtree Road, the remainder of these segments have a posted speed limit of 40 miles per hour. With the exception of the area between Pharr Road and the MARTA bridge over Piedmont Road, this area is typically void of a large tree canopy. Right-of-way varies along the length of the corridor, but is very limited throughout most of the corridor, as the existing roadway and sidewalks occupy essentially the entire right-of-way.

Overhead utility lines clutter the space above the roadway. A main Georgia Power transmission line travels adjacent to Roswell Road and Piedmont Road throughout the study area. Power substations are located in two locations along the corridor, one along the east side of Piedmont Road, south of East Paces Ferry Road, and one along the west side of Piedmont Road, north of Sidney Marcus Boulevard. The transmission line travels along the west side of the road north of East Paces Ferry Road, and along the east side of the road south of that point.

3.2.4 Bridge Inventory

Six bridge structures exist along or over Piedmont Road within the study area, all of which are rated by their owners (GDOT, Norfolk Southern, and MARTA). The overall bridge rating in the bridge inventory is indicated by its sufficiency rating, where a sufficiency rating greater than 50 is considered satisfactory and a rating less than 50 is considered unsatisfactory and in need of replacement. A total of six bridge reports were reviewed. Two of the bridges along the corridor are not owned or maintained by GDOT and are therefore not inspected by GDOT, so no sufficiency rating was available. The remaining four bridges are considered by GDOT to be in satisfactory condition. Table 1 shows the location and condition of each bridge within the study area.

<table>
<thead>
<tr>
<th>Structure ID</th>
<th>Facility Carried</th>
<th>Feature Intersection</th>
<th>Sufficiency Rating</th>
<th>Year Constructed</th>
</tr>
</thead>
<tbody>
<tr>
<td>121-0110-0</td>
<td>Piedmont Road</td>
<td>CSX Railroad</td>
<td>61.83</td>
<td>1960</td>
</tr>
<tr>
<td>121-0111-0</td>
<td>Piedmont Road</td>
<td>Peachtree Creek</td>
<td>67.68</td>
<td>1960</td>
</tr>
<tr>
<td>121-0208-0</td>
<td>SR 13 (Buford Hwy)</td>
<td>SR 237 Piedmont Road</td>
<td>92.22</td>
<td>1953</td>
</tr>
<tr>
<td>121-0506-0</td>
<td>Norfolk Southern</td>
<td>SR 237 Piedmont Road</td>
<td>N/A*</td>
<td>1961</td>
</tr>
<tr>
<td>121-0511-0</td>
<td>SR 237 Piedmont Road</td>
<td></td>
<td>60.00</td>
<td>1984</td>
</tr>
<tr>
<td>121-0568-0</td>
<td>MARTA</td>
<td>SR 237 Piedmont Road</td>
<td>N/A*</td>
<td>1984</td>
</tr>
</tbody>
</table>

*Bridge is not owned/maintained by GDOT, therefore no sufficiency rating is available.

The first two bridges listed carry Piedmont Road over the CSX Railroad and Peachtree Creek, both located in Segment 5 of the corridor. The remaining bridges all carry other facilities over Piedmont Road. SR 13 (Buford Highway) and I-85 are both located at the southern end of the corridor. The Norfolk Southern and MARTA bridges are located adjacent to one another, just north of Miami Circle, in Segment 3. The width of Piedmont Road at that location is constrained by the width of the railroad bridge supports, which allow for only a very narrow sidewalk along the roadway. This bridge is considered to continue to be a constraint on any pedestrian, bicycle, or roadway widening projects in the near future. It is anticipated that it’s replacement will not be needed for many years. The MARTA bridge supports are more widely-spaced and can support minor roadway widening.

3.2.5 Traffic Signals

Movement and balance of traffic flow is directly linked to the traffic control devices which operate along the corridor. Due to the high volume of traffic on Piedmont Road, traffic signals are provided at most intersections with public roadways and some driveways, totaling 21 along the entire study corridor. The average spacing of traffic signals is 850 feet; however, some are as close as 200 feet (e.g. Pharr Road and Peachtree Drive). This irregularity of signal spacing creates difficult locations for pedestrians to cross and the perception of heavier traffic congestion.
Efficient coordination of the traffic signals along any corridor is extremely important and Piedmont Road is no exception. Due to aging equipment, traffic signal equipment slowly gets out of coordination over a period of time. It is evident that the corridor is experiencing some of this. A corridor timing plan for the entire corridor is currently underway by GDOT. This new timing plan will aid in traffic movement along the corridor.

Signal phasing at most intersections with dedicated left-turn lanes consists of leading protected left-turn phases (green arrow begins before the through movement in the sequence of phases). In some instances on Piedmont Road, protected left turns are provided even when dedicated left-turn lanes are not present. This is an uncommon practice that can result in extreme inefficiencies in signal operation when the left-turn arrow is provided for both directions.

Figure 3.4 – Traffic Signal Locations

One example of this deficiency along the corridor occurs at Lakeshore Drive, where protected left turns are provided in both the northbound and southbound directions, despite the absence of left-turn lanes in both directions. Upon a green left-turn arrow indication, if the vehicles at the stop bar are not turning left, the entire left-turn phase is unused. It should be noted that inefficiencies are not as severe if protected left-turn phases are provided in only one direction, even when left-turn lanes are not provided. In this case, the through movement can operate concurrently with the left-turn phase in that same direction, eliminating this unnecessary delay.

A list of traffic signal locations by segment is included in Table 2.

<table>
<thead>
<tr>
<th>Segment</th>
<th>Traffic Signal Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Piedmont Road/Blackland Road at Roswell Road</td>
</tr>
<tr>
<td></td>
<td>Roswell Road at Habersham Road</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Habersham Road</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Piedmont Center/The Manor at Buckhead</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Piedmont Center/Securities Centre</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Buckhead Loop/Lenox Road</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Tower Place</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Peachtree Road</td>
</tr>
<tr>
<td>2</td>
<td>Piedmont Road at East Paces Ferry Road (east leg)/Driveway</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at East Paces Ferry Road (west leg)</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Peachtree Drive</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Pharr Road/Driveway</td>
</tr>
<tr>
<td>3</td>
<td>Piedmont Road at East Wesley Road/Durham Road/Driveway</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Miami Circle</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Sidney Marcus Boulevard</td>
</tr>
<tr>
<td>4</td>
<td>Piedmont Road at Morosgo Drive</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Lindbergh Drive</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Lindbergh Way</td>
</tr>
<tr>
<td>5</td>
<td>Piedmont Road at Garson Drive</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Lakeshore Drive/Driveway</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Piedmont Circle/Lambert Drive/Buford Highway/Driveway</td>
</tr>
<tr>
<td></td>
<td>Piedmont Road at Powers Ferry Road/Durham Road/Driveway</td>
</tr>
</tbody>
</table>

3.3 Land Use and Zoning

The study corridor is located within two Neighborhood Planning Units (NPU); which are citizen advisory councils that make recommendations to the Mayor and City Council on zoning, land use, and other planning issues. The northernmost portion of the study area, Roswell Road and Piedmont Road from Powers Ferry Road to Garson Drive lies within NPU-B. The portion of Piedmont Road within the study area south of Garson Drive lies within NPU-F.

The City of Atlanta 15-Year Future Land Use Map (2004-2019 Comprehensive Development Plan) identifies future land uses along the corridor in an array of densities. Most of the corridor is designated by high density development, with the exception of the portion between Pharr Road and Sidney Marcus Boulevard which currently consists of very low density commercial that abuts well-
established single family residential on both sides of Piedmont Road. The most important guiding principle in this study is the “preservation of property values and character of existing residential neighborhoods.” Land uses for each study segment are provided in Table 3.

Table 3

<table>
<thead>
<tr>
<th>Segment</th>
<th>Adjacent Future Land Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mixed Use, High Density Commercial, Low Density Commercial, High Density Residential, Office/Institutional</td>
</tr>
<tr>
<td>2</td>
<td>High Density Commercial, Low Density Commercial</td>
</tr>
<tr>
<td>3</td>
<td>Mixed Use, High Density Commercial, Low Density Commercial, Single Family Residential, Industrial</td>
</tr>
<tr>
<td>4</td>
<td>Mixed Use, High Density Commercial, Low Density Commercial, Industrial</td>
</tr>
</tbody>
</table>

Source: City of Atlanta
1 Only a few parcels are adjacent to Piedmont Road.

The corridor consists of many zoning designations. In general, it includes mixed use, commercial, office, residential, and industrial zoning. Mixed use, commercial, and high density commercial zoning appear in each segment. Office is generally located along the northern portions of the study area. High density residential is located along the northern and southern extents (in and around the activity centers), while low density residential is generally located in the mid section of the study area. Industrial zoning generally occurs along the far southern portion of the study area.

Zoning designations depict that several areas, such as the area around the Piedmont/Roswell/Habersham triangle and the area between Peachtree Road and Pharr Road may see changes from low-rise commercial to mid and high-rise commercial properties in the future. When market demand increases, these areas may be the first to undergo redevelopment.

To implement adopted urban design standards, the City of Atlanta designates certain areas as Special Public Interest (SPI) districts. These districts include separate and specific zoning regulations in addition to those already provided in the City of Atlanta zoning code. Four SPIs exist within or in the vicinity of the study area: SPI-9 – Buckhead Village, SPI-12 – Buckhead/Lenox Transit Station Area, SPI-15 – Lindbergh Transit Station Area, and SPI-19 – Buckhead Peachtree Corridor. SPI-9 – Buckhead Village lies to the west of the corridor, south of Peachtree Road, and was recently expanded to include parcels closer to the corridor. SPI-12 includes the east side of Piedmont Road from the Buckhead Loops/Lenox Road to Tower Place Drive. SPI-15 includes areas on both sides of Piedmont Road from Miami Circle to Gason Drive. SPI-19 includes both sides of Peachtree Road from East Shadowlawn Avenue to Roxboro Road and was initiated as part of the Peachtree Road Complete Streets project.
3.4 Infrastructure Analysis by Mode

Transportation plans are not just for motorists. In the search for an improved quality of life, plans strive to create and support livable communities that balance travel between modes and allow for a variety of transportation options. The study corridor currently serves transit users, pedestrians, bicyclists, and general automobile traffic in different capacities and with different levels of success throughout. While existing data yield low volumes of pedestrian and bicycle activity, it is reasonable to believe that with a daytime population of 140,000 people that a healthy demand to walk currently exists. This section provides an account of current alternative modes of travel activities.

3.4.1 Transit Infrastructure

Four types of public transit service operate within the study corridor: MARTA rail, MARTA bus, GRTA Xpress regional bus, and The Buckhead Uptown Connection (the “buc”) activity center circulator bus service. Comments from stakeholders suggest that existing transit service on Piedmont Road is not convenient, thus keeping most travelers in their cars. Rail and bus service is provided with longer than desired headways while buses share the same congested roadway with general traffic.

Other than the two rail stations along the corridor, the condition of existing bus stops reflect deferred maintenance, leaving patrons to wait for the bus in uncomfortable and uninviting places. Capitalizing on the rapid and dense growth of the area and incorporating transit-friendly facilities into future development will benefit transit service now more than ever.

Buckhead is located along MARTA’s North-South rail line, which consists of stops at the Lindbergh Center and Buckhead rail stations. The Lindbergh Center rail station is located just north of Lindbergh Drive in the southern activity center, while the Buckhead station is located just east of Piedmont Road, along Peachtree Road in the northern activity center. The Northeast-South rail line, which travels northeast to Doraville, also serves the Lindbergh rail station. Weekday peak rail service currently operates at 10-minute headways, while off-peak service and weekend service operates at 20-minute headways. These headways can, however, be unpredictable according to public feedback provided at study meetings.

Average monthly rail station entries for the Buckhead and Lindbergh Center stations for Fiscal Year 2007 were 2,625 and 8,402 people per day, respectively; making use of the Buckhead station much lower than the Lindbergh Center station. The average entries per month at MARTA’s 38 rail stations is approximately 5,261 entries per day. In general, the Buckhead community’s rail use is relatively close to that of the overall system average; however, the average ridership at the Buckhead station is only half that of the average. This is rather disconcerting because of the station’s placement in one of the most densely populated areas in the City of Atlanta. The Buckhead station represents a significant opportunity to improve ridership, perhaps with better visibility and accessibility to the transit station. As another point of comparison, ridership for the Lenox rail station (located along Lenox Road adjacent to Lenox Square) was recorded as 4,173 entries per day during Fiscal Year 2007.

Ten MARTA bus routes currently serve the areas in the immediate vicinity of the study area, nine of which serve the Lindbergh Center MARTA rail station including one “Blue Flyer” express route with limited stops (Route 245). Routes travel in most directions from Buckhead, intersecting with other MARTA rail stations along the East line, North line, and Northeast line. Fewer routes directly serve the west and south areas of Atlanta. Bus headways widely range, but the average is approximately 15 to 60 minutes during peak commute periods. Bus route 5 (15 minute headways) travels the entire length of the study corridor, while route 38 (1 hour headways) travels along the portion of Piedmont Road between the Lindbergh Center station to Pharr Road.

Thirty-two MARTA bus stops (excluding the Lindbergh Center rail station) are located along Piedmont Road within the study corridor. There are 15 stops serving the northbound direction and 17 stops serving the southbound direction. Throughout the corridor, average spacing between the stops is approximately 650 feet. With the exception of the Lindbergh Center rail station, most of the stops include minimal amenities, most consisting of as little as a sign, with some providing a bench and a shelter from the elements. The stops had a total average of 1,635 weekday riders during the
period between April and August 2007. This averages to 51 riders per bus stop per day. The bus stops with the largest ridership are located in the northern activity center. Bus stops with the least ridership are generally located between Pharr Road and Miami Circle.

Twelve of the 32 bus stops serve MARTA routes 38 and 5 (from Pharr Road to the Lindbergh Center rail station), however the remaining 20 stops serve only route 5 (from Roswell Road to Pharr Road). During 2007, the stop with the highest daily boardings was located in the northbound direction north of the intersection of Piedmont Road/Peachtree Road, with 250 average daily boardings. Bus stops at Piedmont Road and Tower Place Drive (southbound) and Miami Circle (northbound) held the second and third highest average daily boardings at 125 and 113 boardings per day, respectively.

Descriptions of the existing MARTA bus routes follow:

Route 5 – Sandy Springs – Travels between the Dunwoody Station near Perimeter Mall and the Lindbergh Station in Buckhead. The route utilizes Piedmont Road, Roswell Road, Glengrove, and Hammond Drive and runs on 15-minute headways during the week.

Route 6 – Emory – Travels between the Inman Park Station and the Lindbergh Station, through the main Emory campus past Emory Hospital, Emory Clinic, Children’s Healthcare of Atlanta at Egleston, and Emory University. The route utilizes Lindbergh Drive, Lavista Road, Briarcliff Road, Clifton Road, N. Decatur Road, Moreland Avenue, and DeKalb Avenue and runs on 20-minute headways during the week.

Route 23 – Lenox/Arts Center – Travels between the Arts Center Station in Midtown and the Lenox Station near Lenox Square and Phipps Plaza. The route utilizes 15th, 16th, and 17th Streets, Peachtree Road, and Lenox Road and runs on 15- to 30-minute headways during the week.

Route 27 – Monroe Drive – Travels between the North Avenue Station in Midtown and the Lindbergh Station. The route utilizes Lindbergh Drive, Cheshire Bridge Road, Piedmont Circle, Monroe Drive, Boulevard Drive, and North Avenue with selective weekday loop trips along Armour Drive, Ortile Drive, and Clayton Drive. The route runs on 30- to 40-minute headways during the week.

Route 30 – LaVista – Travels between Northlake Parkway near Northlake Mall and the Lindbergh Station. The route utilizes Lindbergh Drive, LaVista Road, Briarcliff Road, Northlake Parkway, and Parklake Drive and runs on 45-minute headways during the week.

Route 33 – Briarcliff Road – Travels between the Chamblee Station and the Lindbergh Station. The route utilizes Lindbergh Drive, Woodward Avenue, Woodward Hills Drive, LaVista Road, Briarcliff Road, Shallowford Road, Chamblee Dunwoody Road, and New Peachtree Road. The route runs on 40-minute headways during the week.

Route 38 – Chanin Park – Travels between Chastain Park and the Lindbergh Station. The route utilizes Piedmont Road, Pharr Road, Peachtree Road, Roswell Road, and Powers Ferry Road, and runs on 1-hour headways during the week.

Route 39 – Buford Highway – Travels between the Doraville Station and the Lindbergh Station. The route utilizes Sidney Marcus Boulevard, Buford Highway, Park Avenue, and New Peachtree Road and runs on 12-minute headways during the week.

Route 44 – West Wesley – Travels between Northside Parkway/Moore Mill Road and the Lindbergh Station. The route utilizes Lindbergh Drive, Peachtree Hills Avenue, Peachtree Road, Peachtree Battle Avenue, Northside Drive, West Wesley Road, Howell Mill Road, Moores Mill Road, West Paces Ferry Road, and Northside Parkway, with some trips to Marietta Boulevard. The route runs on roughly 1-hour headways during the week.

Route 245 – Kensington/Emory Express – Travels between the Kensington Station and the Lindbergh Station. The route utilizes Blue Flyer express services (limited stops) along Piedmont Road, LaVista Road, and Briarcliff Road, with regular service along Clifton Road through the Emory campus including service to Emory University Hospital and Emory University. The route resumes express service along North Decatur Road, Memorial Drive, and Kensington Road. The route runs on 20- to 30-minute headways during the week.

The Lindbergh Center MARTA station is also served by GRTA Xpress Route 410 which travels between the Lindbergh Station and Discover Mills Mall in Gwinnett County during peak commute periods. Morning departures start from Discover Mills at 6:00 am and continue roughly every 45 minutes until 8:00 am. Evening departures start from Lindbergh Station at 4:10 pm and continue roughly every 45 minutes until 6:20 pm. Arrivals are generally 30 minutes after departure. This is the only GRTA Xpress bus route that directly serves the Buckhead area. Other GRTA Xpress bus routes primarily serve Downtown and Midtown Atlanta from destinations around the metro area, including Clayton, Cherokee, Cobb, Coweta, DeKalb, Douglas, Forsyth, Fulton, Gwinnett, Henry, Paulding, and Rockdale Counties.

During the first half of 2007, GRTA Xpress Route 410 (express from Discover Mills to the Lindbergh Center station) had an average of 133 riders per day during its busiest month (January) and 116 riders per day during its least busy month (February). The average passenger per trip was approximately 15.

For all “bus” routes from January to August, 2007, average weekday daily boardings have varied from approximately 1,290 passengers boarding (January), to approximately 1,660 passengers boarding (August), with an average of approximately 1,440 weekday boardings per day for the year. This is slightly down from 2006, which had an average of 1,720 boardings per weekday from January to August. The fluctuations in ridership of the “bus” at various times during the last few years can be attributed to reductions in service initiated by lack of ongoing federal participation after startup grants were exhausted.
3.4.2 Pedestrian Infrastructure

Sidewalks are located along both sides of Piedmont Road; however, conditions vary significantly throughout the study area. Sidewalks in areas in and around the two activity centers tend to be of better quality, while sidewalks in less densely-populated areas tend to be deteriorating, and are in some cases impassable by wheelchair. While crosswalks and pedestrian signals are provided in some form at all of the signalized study intersections, some are in need of repair or replacement.

Existing sidewalk conditions are identified as in "good", "fair", or "poor" condition.

- Good Condition – Sidewalks generally considered to consist of adequate width (at least four feet), are maintained in good condition with no missing segments or major cracking, and generally meet ADA standards.
- Fair Condition – Sidewalks have some maintenance and aging issues and may not consist of transition ramps from the sidewalk into the crosswalk, but are generally passable. These sidewalks may be difficult for people with disabilities to navigate.
- Poor Condition – Sidewalks in poor condition have missing segments or are in such a state of disrepair as to be generally unusable.

For each segment of roadway (between adjacent intersections), the lowest observed sidewalk condition was applied, i.e., any "poor" section between two intersections resulted in the entire segment being classified as poor, since there is an impassable section.
3.4.3 Bicycle Infrastructure

To the average rider, bicycling in Buckhead is difficult, especially on Piedmont Road. There are no exclusive bicycle lanes on Piedmont Road or along most of the adjacent roadways. Bicycle lanes were, however, recently completed on Peachtree Road from Maple Drive to GA 400 as part of the Peachtree Road Complete Streets project. This is part of a larger “complete streets” project that will incorporate bicycle lanes and wider sidewalks along much of the Peachtree Road corridor in Buckhead.

The ARC identifies suitability ratings of major roadways in the Atlanta region for their appropriateness for cycling activity. Each facility is given one of three suitability ratings: best conditions for bicycling, medium conditions for bicycling, and difficult conditions for bicycling. Suitability ratings are based on the five following factors: traffic volumes, posted speed, outside lane and shoulder width, percent truck traffic, and functional classification. The ARC identifies Roswell Road and Piedmont Road within the study area as “difficult conditions for bicycling” and recommends that cyclists exercise a high level of caution and awareness when cycling along these facilities.

Although the City of Atlanta developed the Atlanta Commuter On-Street Bike Plan in September 1995 that identified one-, five-, and fifteen-year bicycle projects within the City of Atlanta, that plan is undergoing a major revision. No portion of Piedmont Road within the study corridor was included in any of the identified projects in the 1995 plan. Several other plans including bicycle recommendations have been published during recent years such as the Urban Land Institute Buckhead Study (1998) and the Lindbergh Transportation Urban Design Plan (2000). These and other studies have recommended accommodating bicyclists in the Buckhead community in several different capacities, including exclusive bicycle lanes as well as wider outside lanes shared between motorists and bicyclists.

The observed number of bicyclists riding on Piedmont Road corridor at peak hours varies throughout the corridor. Counts reveal that fewer than ten bicyclists ride on Piedmont Road through any given intersection during the afternoon rush hour. Given the vehicular volume and speeds along the corridor, it is reasonable to expect that many bicyclists are finding alternate routes or simply choosing not to ride during peak traffic periods. The ARC recently released the Atlanta Region Bicycle Transportation & Pedestrian Walkways Plan, which includes a latent demand analysis for the region. Latent demand is

Table 4
Existing 2007 One-Hour (PM peak traffic hour) Pedestrian Counts

<table>
<thead>
<tr>
<th>Intersecting Road</th>
<th>Pedestrians Crossing Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NB1</td>
</tr>
<tr>
<td>Powers Ferry Road</td>
<td>0</td>
</tr>
<tr>
<td>Roswell Road</td>
<td>2</td>
</tr>
<tr>
<td>Habersham Road</td>
<td>0</td>
</tr>
<tr>
<td>Habersham Road</td>
<td>3</td>
</tr>
<tr>
<td>Piedmont Center/The Manor at Buckhead</td>
<td>8</td>
</tr>
<tr>
<td>Piedmont Center/Securities Centre</td>
<td>0</td>
</tr>
<tr>
<td>Buckhead Loop/Lenox Road</td>
<td>3</td>
</tr>
<tr>
<td>Tower Place Drive</td>
<td>18</td>
</tr>
<tr>
<td>Peachtree Road</td>
<td>12</td>
</tr>
<tr>
<td>East Paces Ferry Road (east leg)/Driveway</td>
<td>0</td>
</tr>
<tr>
<td>East Paces Ferry Road (west leg)</td>
<td>0</td>
</tr>
<tr>
<td>Peachtree Drive</td>
<td>4</td>
</tr>
<tr>
<td>Ponce Road/Driveway</td>
<td>0</td>
</tr>
<tr>
<td>East Wesley Road/Darlington Road/Driveway</td>
<td>0</td>
</tr>
<tr>
<td>Miami Circle</td>
<td>6</td>
</tr>
<tr>
<td>Sidney Marcus Boulevard</td>
<td>6</td>
</tr>
<tr>
<td>Monroe Drive</td>
<td>10</td>
</tr>
<tr>
<td>Main Street (No Crosswalk)</td>
<td>16</td>
</tr>
<tr>
<td>Lindbergh Drive</td>
<td>2</td>
</tr>
<tr>
<td>Lindbergh Way</td>
<td>12</td>
</tr>
<tr>
<td>Garson Drive</td>
<td>1</td>
</tr>
<tr>
<td>Lakeshore Drive/Driveway</td>
<td>4</td>
</tr>
<tr>
<td>Piedmont Circle/Lambert Drive/Buford Highway Off-Ramp</td>
<td>4</td>
</tr>
</tbody>
</table>

1 NB - Northbound 3 EB - Eastbound 2 SB - Southbound 4 WB - Westbound

Table 5
Existing 2007 One-Hour (PM peak traffic hour) Bicycle Counts

<table>
<thead>
<tr>
<th>Intersecting Road</th>
<th>Number of Bicycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NB1</td>
</tr>
<tr>
<td>Powers Ferry Road</td>
<td>0</td>
</tr>
<tr>
<td>East Wesley Road/Darlington Road/Driveway</td>
<td>0</td>
</tr>
<tr>
<td>Main Street</td>
<td>0</td>
</tr>
</tbody>
</table>

1 NB - Northbound 3 EB - Eastbound 2 SB - Southbound 4 WB - Westbound
defined as the relative travel demand if a pre-selected set of (improved) conditions were provided. Although Piedmont Road was not included in the analysis, several adjacent arterials were analyzed. Peachtree Road and Roswell Road both yielded very high levels of bicycle latent demand. It is reasonable to assume that latent demand on Piedmont Road would realize very high demand as well.

Bicycle riders were counted at several locations throughout the corridor. Table 5 shows the bicycle volumes at the only locations where bicycles were observed riding in mixed-traffic. The counts reveal that a limited number of bicyclists currently ride along Piedmont Road. Some riders do, however, ride along the sidewalk. These riders were not counted, but are generally the same as the number riding in the roadway. Approximately four bikes were observed during the peak hour in the more dense portions of the study network (Roswell Road to the Buckhead Loop and Darlington Road to Lindbergh Drive). While the actual number of bicyclists on the roadway now is very low, the ARC’s study defends the “if you build it, they will come” argument. That is, if bicycle lanes are built on Piedmont Road, then it is reasonable to believe they will be used routinely.

3.4.4 General Traffic Infrastructure

Among the most notable challenges the Piedmont Road corridor faces is the congestion caused by traffic during peak hours. Traffic volumes have rapidly increased over the past several years and are expected to continue to increase as the region and community grows.

3.4.4.1 Historical Traffic Volume Growth Trends

Historical daily traffic counts obtained from GDOT reinforce that the study area continues to experience growth. Traffic counts along and near the study corridor were reviewed from 1999 to 2005. The counts reveal that several areas have experienced a reduction in traffic volumes (the central portion of the study area), while others have experienced an increase (the northern and southern portions of the study area). The chart below shows traffic volume increases during the period from 1999 to 2005 in two fastest growing segments along the corridor.

Taking into account all the growth rates in and around the corridor, an overall growth of about 3 percent has occurred over the six year period. It can be expected, however, that growth along the central portion of the study area has increased since 2005 due to the recent development in and around the Lindbergh Center area. For comparison purposes, growth along Peachtree Road in the vicinity of Piedmont Road has remained very low over the six year period.

3.4.4.2 Projected Traffic Volume Growth

A review of the ARC’s 2030 future traffic volume projections reveals that the Piedmont Road corridor is expected to experience high levels of growth, approximately one half to one percent per year for the 25 year period from 2005 to 2030. This growth results in over a 13 percent increase in traffic over the next 20 to 25 years.

3.4.4.3 Observed Traffic Volumes

Two types of vehicular volume counts were performed within the study network. Daily peak hour traffic counts were performed at several locations along Piedmont Road, while specific intersection turning movement counts (TMC) were performed at each of the study intersections. Historical GDOT average daily traffic counts were also collected.

Daily traffic volumes were collected along Piedmont Road at six locations on Thursday and Tuesday, January 18th and 23rd, and at three locations on Saturday, January 20th, 2007. The traffic volumes are provided in Table 6. The data represent the total volume of vehicles that traveled in both the northbound and southbound directions on the days listed.

While observing the corridor during peak hours makes it evident that Piedmont Road is an important regional connection, data confirms its importance. For comparison purposes, while the below data provide a calculated average weekday daily trips of 39,579 along Piedmont Road, Peachtree Road in the vicinity of Piedmont Road carried an average of 45,350 vehicles per day during 2005. Counts also revealed that less than 2 percent of the traffic along Piedmont Road is that of trucks.
Traffic volumes on Saturday are very close to, and in some cases higher than, weekday traffic volumes. This points to the fact that Piedmont is a key corridor in the movement of people in the City of Atlanta and even in the region, and that it serves a wide variety of users, from employees to residents to retail patrons shopping during the weekend.

Traffic along Piedmont Road is caused by both local attractors as well as regional factors. For example, as the Atlanta region's freeway system becomes congested during peak times, motorists tend to leak onto the surface street network. Piedmont Road is a very convenient alternative to GA 400 during peak times; therefore it processes a lot of non-local and commuter traffic.

Traffic volumes collected along the corridor provide insight into a realization of how Piedmont Road is used for commuter and regional traffic. A review of the data determined a clear trend that the southern segments along the corridor have a higher southbound directional split. This means that on a 24-hour basis, more vehicles travel along Piedmont Road in the southbound direction than in the northbound direction. Based on observation, it is reasonable to conclude that this condition arises from the congestion (vehicle queues) along southbound GA 400 caused by severe traffic congestion along southbound I-85 extending beyond I-75 as far as I-20, which is nine miles south of Buckhead. During the morning commute, the I-85 and GA 400 corridors are usually free of heavy congestion, keeping commuters off of Piedmont Road and on the freeways. During afternoon peak conditions, the freeway corridors experience heavy levels of delay. Many drivers decide to “bail out” onto Piedmont Road at the Buckhead Loop and Sidney Marcus Boulevard when they notice congestion ahead.

In order to quantify the use of Piedmont Road as an alternative to southbound GA 400, daily traffic counts were performed at locations on both the east and west sides of GA 400 along the Buckhead Loop and Sidney Marcus Boulevard on Wednesday, September 19, 2007 and are provided in Table 7.

Table 6

<table>
<thead>
<tr>
<th>Count Location</th>
<th>Tuesday</th>
<th>Thursday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>South of Habersham Drive</td>
<td>18,986</td>
<td>21,016</td>
<td>N/A</td>
</tr>
<tr>
<td>North of Peachtree Road</td>
<td>24,780</td>
<td>15,085</td>
<td>12,312</td>
</tr>
<tr>
<td>North of East Paces Ferry Road</td>
<td>15,773</td>
<td>15,085</td>
<td>17,921</td>
</tr>
<tr>
<td>North of East Wesley Road</td>
<td>19,476</td>
<td>18,547</td>
<td>17,782</td>
</tr>
<tr>
<td>South of Sidney Marcus Boulevard</td>
<td>16,257</td>
<td>18,134</td>
<td>23,004</td>
</tr>
<tr>
<td>South of Garson Drive</td>
<td>19,151</td>
<td>18,531</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 7

<table>
<thead>
<tr>
<th>Location</th>
<th>Direction</th>
<th>Daily Traffic Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buckhead Loop</td>
<td>EB</td>
<td>22,721</td>
</tr>
<tr>
<td>East of GA 400</td>
<td>EB</td>
<td>29,399</td>
</tr>
<tr>
<td>Sidney Marcus Boulevard</td>
<td>WB</td>
<td>26,180</td>
</tr>
<tr>
<td>East of GA 400</td>
<td>EB</td>
<td>22,354</td>
</tr>
<tr>
<td></td>
<td>WB</td>
<td>32,632</td>
</tr>
</tbody>
</table>

The above counts show that a higher volume of vehicles travel away from GA 400 on a daily basis (except for westbound Sidney Marcus east of GA 400). This can be attributed a high number of vehicles entering GA 400 from Buford Highway, which further reinforces Piedmont Road's use as a southbound alternative to GA 400.

3.5 Safety

From 2003 to 2005, a total of 2,254 reported vehicular crashes occurred along the study corridor. Of the crashes recorded, the predominant types were rear-end, angle, and same-direction sideswipe crashes. Accident rates along the study corridor range from 2.4 to 2.9 times higher than the statewide average accident rate, and injury rates are 1.6 to 2.0 times higher than the statewide average. Due to the low number of fatalities over the three-year period, it is difficult to compare fatality rates with the statewide average. Table 8 shows the accident rate history of the corridor.
Different crash types can reflect certain types of deficiencies that a corridor has:

- Rear-end collisions – Often occur in congested conditions, when sudden stops may occur due to drivers braking quickly due to conflicting vehicles making turn movements. Tailgating contributes to rear-end collisions, as does limited sight distance, shorter or longer than average yellow signal intervals, or simply anxiety at a high-volume intersection.

- Angle collisions – Often occur at intersections or driveways, particularly involving left turns. At intersections where there is no protected left-turn phase, vehicles must find adequate gaps in which to turn through the opposing traffic. In congested conditions, this can be difficult, and drivers may be tempted to accept less-than-adequate gaps. The same is true with left-turn movements into and out of driveways.

- Same-direction sideswipe collisions – Tend to occur due to lane-changing maneuvers, when drivers do not see vehicles in the adjacent lane. These lane-changing maneuvers may happen as drivers try to get around turning vehicles (particularly when turn lanes are shared with through lanes), to bypass buses stopped at bus stops, or simply because another lane is perceived to be moving faster.

All of these crash types are exacerbated by congested traffic conditions, when drivers are more likely to make sudden maneuvers without adequate clearance between their vehicle and other vehicles. The number of each type of crash is provided in Table 9 from 2003 to 2005.

Analyzing crash data is most effective if looked at in the context of overall intersection volumes with number and types of crashes. Turning movement counts were used to create crash rates based on intersection volumes. Intersections with the highest number of crashes per volume are as follows:

- Roswell Road at Blackland Road/Piedmont Road
- Piedmont Road at Habersham Road
- Piedmont Road at Pharr Road/Driveway

The chart (at right) provides a crash rate per intersection volume among the studied intersections. The rate was calculated by dividing the total three year number of crashes by the intersection’s PM peak hour volume. These rates should be used for comparison purposes only.

The predominant crash type at these intersections was rear-end, which can be explained by high left-turning vehicle volumes with no exclusive turn lanes. The Piedmont corridor consists of many locations where left-turning vehicles stop in a lane that is shared with general through moving traffic. This happens...
along the northern part of the corridor where left-turn lanes are not long enough to accommodate all turning vehicles, as well as in the southern portion of the corridor, where left-turning vehicles share the lane with through-moving vehicles. Specifically, the intersections of Piedmont Road with Pharr Road, Sidney Marcus Boulevard, and Morosgo Drive consist of alternating the inside lane between exclusive left-turn lanes and shared left-turn/through lanes. In these locations, motorists frequently encounter unexpected stopped vehicles in the inside lane.

Crash data were also reviewed specifically for crashes involving pedestrians. The data conclude that the area with the most pedestrian-involved crashes is the Piedmont Road/Habersham Road/Roswell Road triangle. Nine pedestrian-involved crashes were reported in this area from 2003 to 2005. Two other areas with pedestrian-involved crashes are the intersections of Piedmont Road at Sidney Marcus Boulevard and Piedmont Road at Garson Drive. A complete listing of pedestrian-involved crashes along the corridor is provided in Table 10.

3.6 Operational Analysis/Corridor Performance

3.6.1 Analysis Methodology

In order to understand existing and future levels-of-service and operation of each study intersection, Existing and Future Conditions analyses were performed for the entire corridor using Synchro Professional, Version 6.0. Synchro is an industry standard computer software program that uses methodologies contained in the 2000 Highway Capacity Manual and user inputs to determine the operating characteristics of the study intersections. The program utilizes user inputs to determine capacity at each study intersection. Capacity is defined as the maximum number of vehicles that can pass over a particular road segment or through a particular intersection within a specified period under prevailing roadway, traffic, and control conditions. Based on this capacity, Synchro calculates average delay per vehicle to determine intersection Level-of-Service (LOS), queue lengths, and many more valuable measures for the efficiency of intersections within a study network.

While Synchro focuses mainly on vehicular operation; pedestrian, bicycle, and heavy vehicle (busses) volumes are incorporated in calculations. This study incorporates vehicular, pedestrian, and bicycle volumes to most accurately model existing and future conditions. Since existing transit operations utilize the same network as general vehicular traffic, delay for transit is assumed to be the same as general vehicular operations.

This study reports specifically on LOS for each study intersection during the highest volume hour of the AM (morning), Midday (lunch), and PM (afternoon) peak periods. LOS is used to describe the operating characteristics of a road segment or intersection in relation to its capacity. LOS is defined as a qualitative measure that describes operational conditions and motorists’ perceptions within a traffic stream. The Highway Capacity Manual defines six levels-of-service, LOS A through LOS F, with A being the best and F being the worst. Table 11 illustrates LOS thresholds for unsignalized and signalized intersections.

Table 10

<table>
<thead>
<tr>
<th>Location</th>
<th>Number of Injury Involved Crashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roswell Road at Powers Ferry Road</td>
<td>1</td>
</tr>
<tr>
<td>Roswell Road between Powers Ferry Road and Blackland Road</td>
<td>1</td>
</tr>
<tr>
<td>Roswell Road at Blackland Road/Piedmont Road</td>
<td>41</td>
</tr>
<tr>
<td>Piedmont Road at Habersham Road</td>
<td>1</td>
</tr>
<tr>
<td>Piedmont Road at Piedmont Center</td>
<td>1</td>
</tr>
<tr>
<td>Piedmont Road at Tower Place Drive</td>
<td>21</td>
</tr>
<tr>
<td>Piedmont Road at E Paces Ferry Road</td>
<td>1</td>
</tr>
<tr>
<td>Piedmont Road at Pharr Road</td>
<td>1</td>
</tr>
<tr>
<td>Piedmont Road at North Hills Drive</td>
<td>1</td>
</tr>
<tr>
<td>Piedmont Road at Sidney Marcus Boulevard</td>
<td>2</td>
</tr>
<tr>
<td>Piedmont Road between Sidney Marcus Boulevard and Morosgo Drive</td>
<td>1</td>
</tr>
<tr>
<td>Piedmont Road at Morosgo Drive</td>
<td>1</td>
</tr>
<tr>
<td>Piedmont Road at Garson Drive</td>
<td>2</td>
</tr>
</tbody>
</table>

* Two crashes involved injuries to multiple persons
* One crash involved a fatally injured pedestrian

Table 11

<table>
<thead>
<tr>
<th>Level-of-Service</th>
<th>Average Control Delay (sec/veh)</th>
<th>Level-of-Service</th>
<th>Average Control Delay (sec/veh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≤ 15</td>
<td>A</td>
<td>≤ 15</td>
</tr>
<tr>
<td>B</td>
<td>> 15 and ≤ 25</td>
<td>B</td>
<td>> 10.0 and ≤ 20.0</td>
</tr>
<tr>
<td>C</td>
<td>> 25 and ≤ 50</td>
<td>C</td>
<td>> 20.0 and ≤ 35.0</td>
</tr>
<tr>
<td>D</td>
<td>> 35 and ≤ 55</td>
<td>D</td>
<td>> 35.0 and ≤ 55.0</td>
</tr>
<tr>
<td>E</td>
<td>> 50</td>
<td>E</td>
<td>> 55.0 and ≤ 80.0</td>
</tr>
<tr>
<td>F</td>
<td>> 80</td>
<td>F</td>
<td>> 80</td>
</tr>
</tbody>
</table>

LOS D or better is typically described as being a passing level-of-service by local government agencies. Locations with LOS E or F tend to consist of lengthy levels of delay and are generally accepted as candidates for mitigation efforts. While the above standards hold true in many less congested communities, Buckhead motorists are no stranger to much lower levels of operation (such as LOS E or F). Given the existing and expected future congestion in the Buckhead area, this study aims to balance congestion for all user groups, and not benefit only the motorists.

Additionally, this study reports on an arterial travel time analysis for the corridor. Arterial travel times represent the amount of running time plus signal delay, where running time represents time to travel through the corridor at posted speed limits and signal delay is delay caused by traffic signals and congestion located along the corridor.

3.6.2 Existing Conditions Operational Analysis/Corridor Performance

While most of the 22 study intersections along the corridor currently operate at LOS D or better, several currently cause moderate to extreme delay, causing far-reaching congestion along the corridor, especially during the afternoon peak period. The following intersections currently operate at poor levels during at least one daily peak period:

- Roswell Road at
 - Powers Ferry Road/Tuxedo Festival Shopping Center Driveway (unsignalized)
- Piedmont Road at
 - Roswell Road/Habersham Road Triangle
 - Buckhead Loop/Carson Drive
 - Tower Place Drive/Driveway
 - Peachtree Road
 - Sidney Marcus Boulevard
 - Morosgo Drive

![Figure 3.10 – Intersection Bottlenecks](image)

The following are descriptions of capacity deficiencies at each of the above locations:

- **Powers Ferry Road/Tuxedo Festival Shopping Center Driveway**: This unsignalized intersection serves the north-south through movements along Roswell Road well; however, the strain it places on Powers Ferry Road, the Tuxedo Festival Shopping Center Driveway, and the northbound left-turn movement from Roswell Road onto Powers Ferry Road is tremendous. With over 1,000 vehicles traveling in both the north and southbound directions along Roswell Road during the afternoon peak hour, turning left out of and left into Powers Ferry Road and the Tuxedo Festival Shopping Center driveway is very difficult and causes queuing which stretches into adjacent intersections such as Piedmont Road/Roswell Road.

- **Piedmont/Roswell/Habersham Triangle**: The Piedmont/Roswell/Habersham Triangle creates delay along northbound Piedmont Road, northbound Roswell Road, and Habersham Road in both directions. While much of the congestion along Habersham Road is related to the low capacity provided by a regional network of two-lane roads (specifically West Paces Ferry Road), there is a particular impact felt on northbound Piedmont Road. The storage length for the large number of northbound left-turning vehicles (over 450 during the afternoon peak hour) from Piedmont Road onto Habersham Road is very short (approximately 75 feet). This causes left-turning vehicles to back into the two northbound through lanes, thus causing the entire northbound approach to experience heavy queuing, sometimes as far south as the Buckhead Loop.

- **Buckhead Loop/Carson Drive**: This intersection carries much of the load for the Buckhead area. The Buckhead Loop terminates into Piedmont Road, creating multiple conflicting high-volume turning movements. The Buckhead Loop carries both local traffic and traffic avoiding GA 400; over 1,000 vehicles per hour turning left from the Buckhead Loop onto Piedmont Road during both the morning and afternoon peak hours. The intersection’s inability to process the 5,500 vehicle demand during the afternoon peak creates long queues in every direction, especially the southbound and westbound directions along Piedmont Road and the Buckhead Loop.

- **Tower Place Drive**: The narrow Tower Place Drive carries over 500 vehicles during the morning and afternoon peak hours. With only two lanes in both the eastbound and westbound approaches, a large percentage of the traffic signal time is given to Tower Place Drive, reducing much needed time given to Piedmont Road for northbound and southbound travel.

- **Peachtree Road**: The problems associated with this intersection are much like those of the Buckhead Loop intersection to the north. Peachtree Road is an arterial that travels through the heart of Buckhead and carries 4,300 vehicles during the morning and afternoon peak hours. With Piedmont Road’s demand in addition, the intersection attempts to process 7,500 vehicles each during the morning and afternoon peak hours. Much of the time, queuing backs in all directions, impacting the intersections of Tower Place Drive (at both its intersections with Piedmont Road and Peachtree Road), Maple Drive, and East Paces Ferry Road.
Sidney Marcus Boulevard
When southbound GA 400 queues north to the Buckhead area (mainly during the afternoon peak hour) many vehicles traveling to portions of midtown and downtown, as well as I-85, exit at Sidney Marcus Boulevard and use Piedmont Road as a southbound alternative to GA 400. This “bail out” of traffic creates large volumes of westbound left-turning vehicles (nearly 700 during the afternoon peak hour) onto Piedmont Road. Intersection operation is further deteriorated by lowered capacity along Piedmont Road at this intersection, with the inside lanes designated as left-turn lanes (leaving only two northbound and two southbound through movement lanes). The delay created at this intersection causes extreme queues during most afternoon peak hours, sometimes backing as far north along Piedmont Road to Pharr Road (almost a mile away), as far east along Sidney Marcus Boulevard as GA 400, and as far south along Piedmont Road as I-85.

Morosgo Drive
This intersection operates at poor levels, even without the negative effects of the Sidney Marcus Boulevard intersection. Like Sidney Marcus Boulevard to the north, Piedmont Road is reduced to only two northbound and two southbound through movement lanes. The lack of adequate capacity adds to the delay along Piedmont Road created at Sidney Marcus Boulevard at this intersection. Since intersection level-of-service describes only what is happening at individual intersections, it does not always tell the whole story of the corridor. Results from an arterial travel time analysis for the corridor are provided in Table 13. Compared with the posted speed limit of 35-40 mph, the actual speed when factoring for stopped time at traffic signals and in congestion is closer to 10 mph during the most congested conditions.

Table 13

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>MD Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powers Ferry Road/Driveway</td>
<td>F (72.1)</td>
<td>F (N/A)</td>
<td>F (N/A)</td>
</tr>
<tr>
<td>Piedmont Road/Blackland Road</td>
<td>C (32.8)</td>
<td>C (28.9)</td>
<td>D (46.4)</td>
</tr>
<tr>
<td>Habersham Road</td>
<td>D (42.3)</td>
<td>D (36.6)</td>
<td>D (36.3)</td>
</tr>
<tr>
<td>Habersham Road</td>
<td>D (36.8)</td>
<td>C (23.0)</td>
<td>C (28.8)</td>
</tr>
<tr>
<td>Piedmont Center/Driveway</td>
<td>A (9.6)</td>
<td>A (20.9)</td>
<td>C (28.2)</td>
</tr>
<tr>
<td>Piedmont Center/Security Centre</td>
<td>A (9.2)</td>
<td>C (29.1)</td>
<td>D (49.8)</td>
</tr>
<tr>
<td>Buckhead Loop/Cannon Drive</td>
<td>F (84.1)</td>
<td>F (260.1)</td>
<td>F (177.2)</td>
</tr>
<tr>
<td>Tower Place/Driveway</td>
<td>C (29.9)</td>
<td>F (364.4)</td>
<td>F (89.3)</td>
</tr>
<tr>
<td>Peachtree Road</td>
<td>F (184.0)</td>
<td>F (113.5)</td>
<td>F (113.5)</td>
</tr>
<tr>
<td>East Ponce Ferry Road/Driveway</td>
<td>A (3.3)</td>
<td>B (10.6)</td>
<td>A (8.0)</td>
</tr>
<tr>
<td>East Ponce Ferry Road</td>
<td>A (2.9)</td>
<td>A (7.1)</td>
<td>B (10.2)</td>
</tr>
<tr>
<td>Peachtree Drive</td>
<td>A (2.9)</td>
<td>A (2.2)</td>
<td>A (1.1)</td>
</tr>
<tr>
<td>Peachtree Road/Driveway</td>
<td>C (21.7)</td>
<td>D (159.2)</td>
<td>C (54.9)</td>
</tr>
<tr>
<td>East Wesley Road/Dalton Road/Driveway</td>
<td>D (38.5)</td>
<td>B (14.0)</td>
<td>A (7.2)</td>
</tr>
<tr>
<td>Miami Circle</td>
<td>A (1.3)</td>
<td>A (9.0)</td>
<td>A (7.9)</td>
</tr>
<tr>
<td>Sidney Marcus Redeveloped</td>
<td>B (13.7)</td>
<td>C (133.3)</td>
<td>E (60.8)</td>
</tr>
<tr>
<td>Morosgo Drive</td>
<td>C (32.0)</td>
<td>C (28.3)</td>
<td>E (56.5)</td>
</tr>
<tr>
<td>Lindbergh Drive</td>
<td>C (26.2)</td>
<td>C (21.6)</td>
<td>C (22.8)</td>
</tr>
<tr>
<td>Lindbergh Way</td>
<td>B (14.8)</td>
<td>B (17.2)</td>
<td>B (12.2)</td>
</tr>
<tr>
<td>Cannon Drive</td>
<td>C (26.9)</td>
<td>A (9.3)</td>
<td>C (21.5)</td>
</tr>
<tr>
<td>Lakeshore Drive</td>
<td>C (50.9)</td>
<td>B (16.9)</td>
<td>C (23.5)</td>
</tr>
<tr>
<td>Piedmont Circle/Lamert Drive/Buford Highway Off-Ramp</td>
<td>C (20.3)</td>
<td>B (15.3)</td>
<td>B (17.2)</td>
</tr>
</tbody>
</table>

Existing Corridor
(Between Roswell Road at Powers Ferry Road and Piedmont Road at Piedmont Circle/Lambert Drive)

<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>Mid-Day (lunchtime) Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habersham Road</td>
<td>D (36.0)</td>
<td>C (23.0)</td>
<td>C (28.8)</td>
</tr>
<tr>
<td>Powers Ferry Road/Driveway</td>
<td>F (72.1)</td>
<td>F (N/A)</td>
<td>F (N/A)</td>
</tr>
<tr>
<td>Piedmont Road/Blackland Road</td>
<td>C (32.8)</td>
<td>C (28.9)</td>
<td>D (46.4)</td>
</tr>
<tr>
<td>Habersham Road</td>
<td>D (42.3)</td>
<td>D (36.6)</td>
<td>D (36.3)</td>
</tr>
<tr>
<td>Habersham Road</td>
<td>D (36.8)</td>
<td>C (23.0)</td>
<td>C (28.8)</td>
</tr>
<tr>
<td>Piedmont Center/Driveway</td>
<td>A (9.6)</td>
<td>A (20.9)</td>
<td>C (28.2)</td>
</tr>
<tr>
<td>Piedmont Center/Security Centre</td>
<td>A (9.2)</td>
<td>C (29.1)</td>
<td>D (49.8)</td>
</tr>
<tr>
<td>Buckhead Loop/Cannon Drive</td>
<td>F (84.1)</td>
<td>F (260.1)</td>
<td>F (177.2)</td>
</tr>
<tr>
<td>Tower Place/Driveway</td>
<td>C (29.9)</td>
<td>F (364.4)</td>
<td>F (89.3)</td>
</tr>
<tr>
<td>Peachtree Road</td>
<td>F (184.0)</td>
<td>F (113.5)</td>
<td>F (113.5)</td>
</tr>
<tr>
<td>East Ponce Ferry Road/Driveway</td>
<td>A (3.3)</td>
<td>B (10.6)</td>
<td>A (8.0)</td>
</tr>
<tr>
<td>East Ponce Ferry Road</td>
<td>A (2.9)</td>
<td>A (7.1)</td>
<td>B (10.2)</td>
</tr>
<tr>
<td>Peachtree Drive</td>
<td>A (2.9)</td>
<td>A (2.2)</td>
<td>A (1.1)</td>
</tr>
<tr>
<td>Peachtree Road/Driveway</td>
<td>C (21.7)</td>
<td>D (159.2)</td>
<td>C (54.9)</td>
</tr>
<tr>
<td>East Wesley Road/Dalton Road/Driveway</td>
<td>D (38.5)</td>
<td>B (14.0)</td>
<td>A (7.2)</td>
</tr>
<tr>
<td>Miami Circle</td>
<td>A (1.3)</td>
<td>A (9.0)</td>
<td>A (7.9)</td>
</tr>
<tr>
<td>Sidney Marcus Redeveloped</td>
<td>B (13.7)</td>
<td>C (133.3)</td>
<td>E (60.8)</td>
</tr>
<tr>
<td>Morosgo Drive</td>
<td>C (32.0)</td>
<td>C (28.3)</td>
<td>E (56.5)</td>
</tr>
<tr>
<td>Lindbergh Drive</td>
<td>C (26.2)</td>
<td>C (21.6)</td>
<td>C (22.8)</td>
</tr>
<tr>
<td>Lindbergh Way</td>
<td>B (14.8)</td>
<td>B (17.2)</td>
<td>B (12.2)</td>
</tr>
<tr>
<td>Cannon Drive</td>
<td>C (26.9)</td>
<td>A (9.3)</td>
<td>C (21.5)</td>
</tr>
<tr>
<td>Lakeshore Drive</td>
<td>C (50.9)</td>
<td>B (16.9)</td>
<td>C (23.5)</td>
</tr>
<tr>
<td>Piedmont Circle/Lamert Drive/Buford Highway Off-Ramp</td>
<td>C (20.3)</td>
<td>B (15.3)</td>
<td>B (17.2)</td>
</tr>
</tbody>
</table>
future conditions
4.0 Future Conditions

The Piedmont Road corridor is expected to continue to experience growth into the foreseeable future. It is projected that this growth will continue to deteriorate the operation of the roadway and areas with existing deficiencies and will continue to create increased delay and congestion along the corridor. The following sections describe how the future growth, coupled with new development, will impact the corridor.

4.1 Growth

The existing traffic congestion in Buckhead and along the Piedmont Road corridor is a testament to the dramatic changes being experienced in Buckhead. The gleaming new towers that offer “the best in modern Atlanta living, dining and working” are a symbol of change in Buckhead. Still more change is projected, with a near doubling of the number of multifamily units and hotel rooms and a 76 percent increase in office space. Retail space is projected to increase by 30 percent. GDOT reports that traffic volumes around the corridor increased by over three percent during the period from 1999 to 2005, with some areas growing at over 15 percent during the six-year period.

The existing growth trends in the region and Buckhead over the past several years are expected to continue. The ARC projects that the Buckhead area will experience an increase in population of 40 percent and an increase in jobs of 30 percent from 2000 to 2030. This equates to an increase of over 27,000 residents and 29,000 jobs.
4.1 Transit, Pedestrian, and Bicycle

Some believe that Piedmont Road has already reached its capacity. As congestion increases along the corridor, some motorists may choose to change travel modes just to avoid this congestion. It is reasonable to expect that the activity centers, particularly the Buckhead and Lindbergh Center MARTA stations, will experience an increase in activity as residents, workers, and shoppers choose to use transit (both rail and bus) as an alternative to sitting in slow traffic. It should be noted that this shift in travel mode is directly correlated with the availability of safe and convenient service to serve the needs of patrons.

Because of the continued dense development patterns, pedestrian and bicycle volumes are also anticipated to grow. Given the pedestrian and bicycle latent demand analysis performed by the ARC, it is reasonable to expect that the demand for walking and bicycling will increase along the corridor, especially as new development embraces these modes. Because of their potential to foster significant redevelopment opportunities, the two areas that are expected to experience the greatest increase in pedestrian and bicycle activity are those between the Buckhead Loop and P haul Road, as well as between Sidney Marcus Boulevard and Garson Drive. For purposes of the analysis for this report, given the latent demand and projected growth, existing pedestrian and bicycle volumes were grown at four percent per year from 2007 to 2012 and Future 2012 volumes were grown at two percent per year for 15 years, to reach 2027 projected volumes.

4.1.2 Traffic

As discussed previously, population and job growth in the Buckhead area and the region are expected to continue to stay strong through 2030. Strong growth is expected to continue over the short-term, with slower, more steady growth occurring through 2030. Historical GDOT average daily traffic counts and the ARC’s future volume projections from their Future Travel Demand Model were used to determine appropriate growth rates for the two scenarios. Existing zoning and future land uses were also taken into account when determining growth rates.

For the Future 2012 model, Existing 2007 intersection traffic volumes were grown at two percent per year for five years. Additionally, specific anticipated traffic associated with the Terminus development (Peachtree and Piedmont) and the Lindmont development (Garson and Piedmont) were added to the study network.

As the corridor nears capacity, the Future 2027 volumes are expected to grow at a slightly slower rate. This trend can be seen in the ARC’s future volume projections. Multiple points along the corridor were reviewed using ARC’s future projections. This review led to the determination of a half a percent per year growth rate from 2012 to 2027.

4.2 Planned Improvements and Developments

ARC’s 2008-2013 Transportation Improvement Program (TIP) and the Envision6 Regional Transportation Plan (RTP) were reviewed to determine programmed and planned projects in the study area vicinity. Relevant projects are listed in Table 14. Projects with a status of “Programmed” are listed in the TIP, while projects with a status of “Long Range” are in the RTP but have not been programmed in the TIP.

<table>
<thead>
<tr>
<th>Project Number</th>
<th>Completion Date</th>
<th>Status</th>
<th>Service Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT-215B</td>
<td>2009</td>
<td>Programmed</td>
<td>Roadway Operational Upgrades</td>
<td>SR 141 (Peachtree Road from GA 400 Overpass to Roswell Rd.) - upgrade sidewalks, add bicycle lanes, create raised median</td>
</tr>
<tr>
<td>AT-215C</td>
<td>2010</td>
<td>Programmed</td>
<td>Roadway Operational Upgrades</td>
<td>SR 141 (Peachtree Road from Shadowlane Ave. to Maple Dr.) - upgrade sidewalks, add bicycle lanes, create raised median</td>
</tr>
<tr>
<td>AT-AR-212A</td>
<td>2010</td>
<td>Programmed</td>
<td>Interchange Capacity</td>
<td>I-85 North at GA 400 - Widening of I-85 northbound exit ramp</td>
</tr>
<tr>
<td>AR-451A</td>
<td>2015</td>
<td>Long Range</td>
<td>Fixed Guideway Transit Capital</td>
<td>Beltline transportation corridor - Transit service in the northeast Quadrant</td>
</tr>
<tr>
<td>M-AR-288</td>
<td>2015</td>
<td>Programmed</td>
<td>Fixed Guideway Transit Capital</td>
<td>Lindbergh/Emory high-speed transit service from Lindbergh MARTA rail station to Emory University/Centers for Disease Control</td>
</tr>
<tr>
<td>AR-450</td>
<td>2020</td>
<td>Programmed</td>
<td>Bicycle/Pedestrian Facilities</td>
<td>Beltline transportation corridor - Multi-use path linking Lindbergh Center to Emory Park to West End to Howell Station to Lindbergh Center</td>
</tr>
<tr>
<td>AT-AR-212B</td>
<td>2020</td>
<td>Long Range</td>
<td>Interchange Capacity</td>
<td>Creation of new access ramps from I-85 SB to GA 400 NB and from GA 400 SB to I-85 NB, including 6-lane C/D system from I-85/400 Interchange to N Druid Hills Road</td>
</tr>
<tr>
<td>AR-451D</td>
<td>2030</td>
<td>Long Range</td>
<td>Fixed Guideway Transit Capital</td>
<td>Beltline transportation corridor - Transit service in the northwest quadrant</td>
</tr>
<tr>
<td>AR-91D</td>
<td>2030</td>
<td>Long Range</td>
<td>Arterial BRT</td>
<td>SR 13 (Dekalb Highway) Arterial Bus Rapid Transit from Pleasant Hill Road to MARTA Lindbergh Station</td>
</tr>
<tr>
<td>AR-456B</td>
<td>2030</td>
<td>Long Range</td>
<td>Fixed Guideway Transit Capital</td>
<td>Peachtree Street – Phase 2 north from Brookwood Station to Club Drive</td>
</tr>
</tbody>
</table>

Source: Atlanta Regional Commission, Envision6
Perhaps the most dramatic of planned projects, which would have a significant impact on the Piedmont Road corridor, is the construction of new interchange ramps connecting southbound GA 400 to northbound I-85 and the return movement from southbound I-85 to northbound GA 400. This long-studied project continues to be in the Regional Transportation Plan, with a network year of 2020 and no dedicated funding source. An initial conceptual design is under study for the ramp connections and scheduled for completion in 2010.

One project that recently concluded is the first phase of the Peachtree Road Complete Streets project, where a raised median and pedestrian/bicycle improvements were constructed along Peachtree Road from Maple Drive to the GA 400 bridge. Extension of this project west to Shadow Lawn Avenue and east to Roxboro Road is programmed for completion by 2010.

Several projects have been identified for the Beltline multi-use trail and transit corridor. In most areas of the city, the facility is proposed to use existing rail right-of-way; however, in Buckhead, alternatives to the existing rail right-of-way are being investigated. Several projects are currently programmed and planned to occur through 2020 to construct a multi-use trail including transit service. A connection to the Lindbergh Center MARTA station is currently being investigated by the Beltline, Inc. The Piedmont Area Transportation Study strongly endorses the vision for connecting the Beltline directly to the Lindbergh Center MARTA station.

The City of Atlanta 2008-2013 Capital Improvement Program was also reviewed to identify projects which could affect the Piedmont Road corridor. Relevant projects are listed in Table 15. These projects currently have no or partial funding and include streetscape and intersection improvements which could have a more direct impact on the Piedmont Road corridor.

It is important to note that project DPW-05-0425 reflects the City’s response to deficiencies in the pedestrian conditions along the corridor and project DPW-26-0250 is their response to traffic congestion concerns caused by the bottlenecks in the Lindbergh area. The challenge with implementing these projects continues to be identifying sufficient construction funds.

Table 15

<table>
<thead>
<tr>
<th>Project Number</th>
<th>Completion Year</th>
<th>Funding Status</th>
<th>Project Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPW-05-0495</td>
<td>Long Range</td>
<td>Partially Funded</td>
<td>Streetscape Project</td>
<td>Piedmont Road from I-85 to Peachtree Road</td>
</tr>
<tr>
<td>DPW-06-0049</td>
<td>Long Range</td>
<td>Partially Funded</td>
<td>Bridge Improvements</td>
<td>Piedmont Road Bridge ROW Acquisition - Piedmont Road Bridge over CSX Railroad</td>
</tr>
<tr>
<td>DPW-06-0030</td>
<td>Long Range</td>
<td>Not Funded</td>
<td>Intersection Improvements</td>
<td>The addition of turn lanes and median improvements on Piedmont Road from Sidney Marcus Boulevard/Moreno Drive to Ganson Road</td>
</tr>
</tbody>
</table>

Source: City of Atlanta

4.3 Future Conditions (Before Recommendations) Operational Analysis

An operational analysis was performed for Future 2012 AM, Midday, and PM peak hours and Future 2027 PM peak hour conditions by combining projected vehicular traffic volumes with projected pedestrian and bicycle volumes. The analysis in this section describes projected conditions during the future year scenarios if none of the recommendations as described in Section 5 are implemented. An analysis of the Future Conditions with recommendations follows later in this report. None of the previously mentioned improvements are expected to be constructed prior to 2012; therefore, they also were not included in the capacity analysis.

All of the 22 study intersections experience a decrease in operation from Existing 2007 conditions to Future 2012 and 2027 conditions during the PM peak hour. Signal timing was the only improvement included in these base future year analyses. This optimization and coordination of signals is why all of the study intersections are not expected to operate at a reduced level-of-service during future conditions.

Future deficiencies for the corridor consist of growing congestion and longer delays at the bottleneck intersections discussed in Section 2.

Table 16 provides expected future levels-of-service for each study intersection and a comparison with Existing 2007 intersection delay.
LOS. Again, the table reflects anticipated levels-of-service for each study intersection, assuming no improvements are made to the roadway network through 2027. Highlighted boxes indicate that an intersection operates at a poor level-of-service during a particular peak hour.

The graph below provides the PM peak hour levels-of-service from the above table. In order to show the LOS trends of all the study intersections more clearly, the graph’s maximum value is 180 seconds of delay, which represents an average of 3 minutes of delay for each motorist at a given intersection. The intersections of Roswell Road at Powers Ferry Road, Piedmont Road at the Buckhead Loop, Piedmont Road at Tower Place Drive, and Piedmont Road at Peachtree Road have future levels of delay well over 200 seconds.

The above graph shows that most of the study intersections will continue to experience deteriorating levels-of-service through 2027.

A travel time comparison between Existing 2007, Future 2012, and Future 2027 conditions is provided in Table 17. The shade of the boxes indicates either an increase or decrease in travel time and average speed along the corridor. Darker shaded boxes indicate that conditions deteriorate from the previous modeled year, while lighter shaded boxes indicate that conditions improved from the previous modeled year.

As described above, if no improvements are made to the Piedmont Road corridor over the next twenty years the time it takes to travel the 3.4 mile corridor during the afternoon rush hour will increase from 16.3 minutes to 26.0 minutes in the northbound direction and increase from 20.8 minutes to 28.3 minutes in the southbound direction.

The below graph shows the expected increase in northbound and southbound travel times for the PM peak hour conditions if no improvements are implemented along the corridor. As shown, an average increase of over eight minutes is expected to occur along the corridor during the PM peak hour if no improvements are made to the corridor.

As illustrated in Table 19 and the graph above, if no improvements are implemented along the corridor, travel times throughout the corridor are expected to increase substantially and the corridor is expected to experience a significant increase in travel time, in both the northbound and southbound direction.
recommendations
5.0 Recommendations

The multimodal approach of this study created a list of 47 recommended projects tailored to fit the comments and input received during this study process, but grounded by technical analysis that shows that each recommendation will improve travel conditions. If implemented, these projects will have a major improvement on the quality of life for all user groups of the Piedmont Road corridor. This multimodal approach will provide more reasonable and sustainable transportation solutions to those who chose to use them. Graphics providing a visual representation of the comprehensive list of recommended projects are broken into the five study segments and are provided at the conclusion of this report.

The below graphics depict the future look of Piedmont Road as compared with its existing state. The first image shows Piedmont Road between the Buckhead Loop and Tower Place Drive (looking north) while the second image shows Piedmont Road just north of Lindbergh Drive (looking south).

As discussed earlier in this report, Piedmont Road is nearing its capacity, some would even argue that it already has reached its breaking point. This study endeavors to improve conditions for all users, especially those choosing to travel by modes other than the single occupant vehicle. Balancing mobility is the driving force behind the recommendations. The following is a summary of the types of improvements recommended to balance mobility in the Piedmont Road corridor:

- Enhancements to transit service and infrastructure will entice more users to its more convenient service and comfortable facilities
- Pedestrian and bicycle facilities will be improved by creating a safer and more aesthetically pleasing environment
- Transportation Demand Management (TDM) and regulatory changes are recommended to help encourage commuters and developers to make certain decisions which will have large impacts on the corridor
Roadway improvements will improve capacity for the general motorists and bus service, and be constructed in such a way to increase the aesthetics and safety for pedestrians and not preclude dedicated bicycle lanes from being constructed in the future.

System improvements will help relieve some of the traffic demand on the Piedmont Road corridor due to the region's freeway system capacity shortfalls.

New roadway connections will improve the street grid network that will aid all modes of travel.

As previously mentioned, the Piedmont Road corridor was divided into five segments for the purposes of this study. The segments are distinct both in their current characteristics as well as in their future vision. With this in mind, general themes were identified for each segment that guided the development of the recommendations:

Segment 1, Roswell Road to Peachtree Road – Create a gateway to Buckhead in the north, pedestrian and transit connections throughout, and a vehicular/pedestrian boulevard in the south.

Segment 2, Peachtree Road to Pharr Road – Create a boulevard that supports redevelopment, manages access along the west side of Piedmont Road, and provides enhanced mobility for pedestrians and bicyclists.

Segment 3, Pharr Road to Sidney Marcus Boulevard – Preserve the residential character while improving traffic flows and safety.

Segment 4, Sidney Marcus Boulevard to Lindbergh Drive – Create vehicular/pedestrian boulevard, manage high volumes of traffic, improve safety, and enhance pedestrian access to the Lindbergh Center MARTA station and the street network along the east side of Piedmont Road.

Segment 5, Lindbergh Drive to I-85 – Manage high volumes of traffic, improve safety, and encourage the development of the Beltline project.

Below is a complete listing of the recommended projects identified by this study. This list of recommended projects is the result of recommendations created by an intense public engagement process and thorough technical analysis.

Transit
- T1 – Express Bus Service Enhancements
- T2 – Activity Center Circulator Expansion
- T3 – MARTA – Increase Frequencies
- T4 – MARTA – Consolidate/Enhance Bus Stops
- T5 – Transit Signal Priority
- T6 – Uniform Bus Stop Standards
- T7 – Queue Jumper Lanes

Pedestrian
- P1 – Pedestrian Crossing Safety Improvements (Entire Corridor)
- P2 – Sidewalk Improvements – Powers Ferry Road to Buckhead Loop
- P3 – Pedestrian/Bicycle Bridge Over GA 400 (Northern Concourse)

Bicycle
- B1 – Bicycle Routes/Lanes

Transportation Demand Management
- TDM1 – Zipcar
- TDM2 – TDM Education Campaign
- TDM3 – Congestion Monitoring Web Application

Corridor
- C1 – Signal Timing Plan
- C2 – Signal Equipment Upgrades
- C3 – Speed Limit Reductions
- C4 – Way-Finding Signage
- C5 – Streetscape Specifications
- C6 – Georgia Power Substation Screening
- C7 – Buckhead Loop to Peachtree Road (Capacity Improvement)
- C8 – Peachtree Road to Pharr Road (Capacity Improvement)
- C9 – Pharr Road to Sidney Marcus Boulevard (Capacity Improvement)
- C10 – Sidney Marcus Boulevard to Lindbergh Drive (Capacity Improvement)
- C11 – Lindbergh Drive to Lambert Drive (Capacity Improvement)
The following are detailed descriptions of each recommended project.

Transit Projects

T1 – Express Bus Service Enhancements

Currently, only one express bus route serves the Buckhead community directly. GRTA Xpress route 410 travels between Gwinnett County and the Lindbergh Center MARTA station. While this station is located in a transit oriented development (TOD), the major employment density in Buckhead is located in the northern activity center which is centered around the MARTA Buckhead rail station. Approximately one-third of the workers in this area live in Cobb and Gwinnett Counties; therefore, it is reasonable to expect that demand for express bus from these areas exists. It is recommended that vanpools be initiated to determine the extent of the demand for exclusive express routes to this area.

Express routes serving Cobb County (Town Center Mall), Gwinnett County (Discover Mills Mall), and DeKalb/Rockdale Counties (Panola Road and Sigman Road Park and Ride lots) should be investigated. At a minimum, express bus should serve the northern activity center by serving the Piedmont Center development, as well as the office building located along Tower Place Drive. The service should also serve areas east along Peachtree Road. The Express Buses should access the area from GA 400 and options should be explored as to providing exclusive transit access to areas that may have the capability (i.e. project NC1 – Buckhead Loop to Piedmont Center, Shuttle/Express Bus Only).

GRTA should work closely with CCT and GCT to develop vanpools and from the recommended locations and swiftly move toward providing express bus from these the counties needed most.

T2 – Activity Center Circulator Expansion

The “bac” is the area’s existing activity center circulator. It currently serves areas along Piedmont and Peachtree Roads north and east of the intersection of Piedmont Road at Peachtree Road. With densities increasing in the Lindbergh area and with the proposed Streets of...
Buckhead development in the Buckhead Village, trips between these dense clusters of development will continue to grow. As this development occurs, efforts should be made to connect these areas together with an activity center circulator that provides no or low-cost service to those making short trips between these centers.

Federal funding for the “bus” has been eliminated since the three year initiation period, leaving funding the system the responsibility of the local government. It is recommended that further funding sources be investigated and the Buckhead CID and BATMA pursue opportunities to increase and expend service in coordination with MARTA.

T3 – MARTA – Increase Frequencies

MARTA currently serves the study area with bus and rail transit. While the existing service provides routes and connections to many parts of the region, feedback from stakeholders provided insight into how ridership can increase. Amongst the largest complaints the public had are long wait times and unreliable service, many times caused by the high levels of congestion along the Piedmont Road and adjacent corridors (bus only). Existing MARTA infrastructure will be drastically improved by increasing frequencies of rail and bus service.

This study recommends that MARTA increase peak hour rail frequencies from the existing 10 minute headways, to shorter 5 minute headways during peak commute hours. Additionally, it is recommended that MARTA increase the frequency of bus service in the area by 30 percent (existing routes along the corridor consist of headways ranging from 15 to 30 minutes during peak commute hours). Projects that will aid in achieving higher frequencies are Bus Stop Consolidation/Improvements (T4), Transit Signal Priority (T5), and Queue Jumper Lanes (T7).

T4 – MARTA – Consolidate/Enhance Bus Stops

The Piedmont corridor currently has several bus stops that receive very little activity. Some stops record less than ten riders per day. Elimination of these stops will help improve travel times. Table 18 provides a complete listing of the existing bus stops and their recommended treatment.

<table>
<thead>
<tr>
<th>Existing Bus Stop</th>
<th>Location</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>900477</td>
<td>East At Miami Circle</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>900478</td>
<td>East At Alpine Road</td>
<td>Remove</td>
</tr>
<tr>
<td>900479</td>
<td>East At Elliott Circle</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>900480</td>
<td>East At Burke Road</td>
<td>Remove</td>
</tr>
<tr>
<td>900481</td>
<td>West North of E Paces Ferry Road</td>
<td>Remove</td>
</tr>
<tr>
<td>900482</td>
<td>West Peach Road</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>900483</td>
<td>West North Hills Drive</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>900484</td>
<td>West South of Elliott Circle</td>
<td>Remove</td>
</tr>
<tr>
<td>900566</td>
<td>East At Midtown Mass Transportation Center</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>901702</td>
<td>East At Peachtree Drive</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>901703</td>
<td>East South of E Paces Ferry Road</td>
<td>Remove</td>
</tr>
<tr>
<td>901704</td>
<td>East At Mass Transportation Center</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>901705</td>
<td>West At Mass Transportation Center</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>901706</td>
<td>West At E Wesley Road</td>
<td>Remove</td>
</tr>
<tr>
<td>901707</td>
<td>West At Alpine Road</td>
<td>Remove</td>
</tr>
<tr>
<td>901755</td>
<td>West North of Miami Circle</td>
<td>Remove</td>
</tr>
<tr>
<td>901756</td>
<td>West Sidney Marcus Boulevard</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>901757</td>
<td>East At Dunbar Road</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>905172</td>
<td>East At Piedmont Center/Manor at Buckhead</td>
<td>Maintain existing location, Create “Super Stop”</td>
</tr>
<tr>
<td>905289</td>
<td>East At Tower Place Drive</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>905290</td>
<td>East South of Buckhead Loop</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>905407</td>
<td>West North of Piedmont Center/Manor at Buckhead</td>
<td>Remove</td>
</tr>
<tr>
<td>905408</td>
<td>West North of Piedmont Center/Securities Centre</td>
<td>Maintain existing location, Create “Super Stop”</td>
</tr>
<tr>
<td>905409</td>
<td>West At Buckhead Loop</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>905410</td>
<td>West North of Tower Place Drive</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>905429</td>
<td>East North of Peachtree Road</td>
<td>Relocated to south of Peachtree Road, Create “Super Stop” with redevelopment</td>
</tr>
<tr>
<td>905523</td>
<td>East North of Piedmont Center/Manor at Buckhead</td>
<td>Remove</td>
</tr>
<tr>
<td>905524</td>
<td>East At Habersham Road</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>905525</td>
<td>West At Tower Place Drive</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>905526</td>
<td>West North of Peachtree Road</td>
<td>Maintain existing location, Create “Super Stop” with redevelopment</td>
</tr>
<tr>
<td>905760</td>
<td>West North of Piedmont Center/Securities Centre</td>
<td>Remove</td>
</tr>
<tr>
<td>905928</td>
<td>West At Habersham Road</td>
<td>Maintain existing location</td>
</tr>
<tr>
<td>N/A</td>
<td>West At Lindbergh Center Rail Station</td>
<td>Create “Super Stop” at existing bus dropoff</td>
</tr>
</tbody>
</table>
Enhancing the existing bus stops and incorporating a series of “Super Stops” will entice individuals by providing a more convenient and welcoming environment. Enhanced amenities at minor bus stops should at minimum be the replacement of broken furniture with new furniture (T6) and clearly marked signage with route information.

“Super Stops” should be located in areas with dense development, specifically on the east and west sides of Piedmont Road at the following locations along the corridor:

- North of Securities Centre/Piedmont Center
- Piedmont Road at Peachtree Road
- Lindbergh Center MARTA station

Super stops should consist of additional amenities such as covered and attractive structures with comfortable seating, complete MARTA system route information, and LCD display boards showing arrival times. Special Super Stop consideration should be given to specific areas that are prime for redevelopement. The Piedmont Road/Peachtree Road intersection is a prime location for Super Stops when the adjacent properties redevelop. Incentives should be given to the developers of these properties to incorporate the bus stops into the building structure and connect them with the retail functions of the development. Efforts to share these stops with other transit providers is encouraged.

MARTA believes that the Piedmont Road corridor, as well as surrounding corridors in the study area; such as Roswell Road, Sidney Marcus Boulevard, and Peachtree Road, appear to be well suited for wireless transit signal priority. Transit bus signal priority attracts people to transit because of higher frequencies made possible by improved traffic flow by allowing bus stops to be moved from the near to the far side of intersections and reducing delays related to slower bus acceleration and braking characteristics.

T5 – Transit Signal Priority

Transit signal priority uses technology that allows buses along a given corridor to communicate with upcoming traffic signals in order to maximize the amount of green time they experience, improving progression along the corridor. Wireless transit signal priority technology was developed jointly between MARTA, the DeKalb County Public Works Department, and GDOT and is set to be implemented in 2008 on several corridors within the city, along with traffic signal controller upgrades.

T6 – Uniform Bus Stop Standards

Uniform bus stop standards should be developed to ensure that each bus stop contains certain amenities at a minimum. These standards should be addressed in coordination with the City of Atlanta and MARTA and be applied to stops in the study corridor as well as throughout the City and MARTA’s service area.

T7 – Queue Jumper Lanes

A queue jumper lane is a type of roadway geometry that provides either an exclusive bus lane or one shared with right-turning vehicles on the approach to a signalized intersection. The intent of the lane is to allow the high-capacity vehicles (buses) to avoid long queues, reducing the delay caused by the signal and improving the operational efficiency of the transit system. A queue jumper lane is generally accompanied by a signal which provides a phase specifically for vehicles within the queue jump (buses). Such a signal reduces the need for a designated receiving lane, as vehicles in the queue jump lane get a “head-start” over other queued vehicles and can therefore merge into the regular travel lanes immediately beyond the signal.
Existing and expected traffic queuing, Right-of-way constraints, and bus routes were all considered for selection of queue jumper lane locations. This study recommends that the City initiate a queue jumper study for heavily congested corridors containing major bus routes. For the Piedmont Road corridor, queue jumper lanes are recommended at the following locations:

- Northbound approach at Piedmont Road/Buckhead Loop
- All approaches at Piedmont Road/Peachtree Road
- Northbound and southbound approaches at Piedmont Road/Morosgo Drive

Pedestrian Projects

P1 – Pedestrian Crossing Safety Improvements

As discussed in this report, several intersections along the corridor have a history of pedestrian-vehicle crashes. This project consists of a major overhaul of pedestrian treatment at intersections in order to enhance pedestrian safety. The below specific pedestrian safety improvements are recommended for implementation:

- Bring all pedestrian facilities to ADA-compliance standards
 - Pedestrian ramps and crossings at all intersections
 - Eliminate obstructions in clear zone (such as utility poles, bus shelters, etc.)
- Restripe crosswalks and stop bars along the corridor (where needed)

- Install countdown pedestrian signals at all existing and proposed signalized intersections
- Convert left-turn signal phasing from lead to lag where possible at intersections in the following locations:
 - Powers Ferry Road to Pharr Road
 - Sidney Marcus Boulevard to Garson Drive

This project can be implemented either as a stand-alone project or in conjunction with the corridor and intersection projects that follow this section.

Lagging left-turns are protected left-turn maneuvers that are required to occur at the end of the traffic signal cycle, as opposed to at the beginning of the cycle. This change in the order of the left-turn maneuver provides for vehicle/pedestrian separation, as pedestrians normally tend to cross at the beginning of the straight-through green interval. Where pedestrians are crossing the side street, the pedestrians have cleared the intersection prior to the beginning of the lagging-green interval, thus avoiding conflict with left-turning vehicles.

- Provide a Leading Pedestrian Interval (LPI) at the following signalized intersections with Piedmont Road:
 - Tower Place Drive
 - Peachtree Road
 - Sidney Marcus Boulevard
- Morosgo Drive
- Main Street (once signalized)
- Lindbergh Drive

Pedestrians who cross in the crosswalk during the green light have trouble with drivers who turn into their path and neglect to yield. This conflict has been the cause of many pedestrian injuries and deaths, and is one of the main deterrents of blind people concerned with crossing streets independently. The LPI provides a few seconds head start to the pedestrians. The pedestrian signal begins while the signal for the drivers remains red; after pedestrians have had a few seconds to commence crossing the street, the drivers receive a green signal.

P2 – Sidewalk Improvements – Powers Ferry Road to Buckhead Loop

While roadway widening is not recommended in the area between Powers Ferry Road and the Buckhead Loop (other than the turn lane associated with project H1), sidewalk enhancements are recommended. In an effort to make this portion of the corridor more pleasing and safe for pedestrians, this project includes creating a five-foot furniture zone between the roadway and a minimum six-foot sidewalk. A portion of this project may be constructed with the Piedmont Road/Roswell Road/Habersham Road Triangle project (H1).
P3 – Pedestrian/Bicycle Bridge over GA 400 (Northern Concourse)

The Buckhead CID, MARTA, and SRTA are currently in the design phases for a pedestrian and bicycle connection over GA 400, connecting Tower Place Drive on the west with Stratford Road to the east, just north of the Buckhead MARTA rail station. This report recommends that the bridge be designed in such a way to accommodate buses for future use by shuttle.

Bicycle Projects

B1 – Bicycle Routes/Lanes

Due to several factors, such as right-of-way constraints caused by shallow commercial properties and the existing Southern Railroad bridge, between Pharr Road and Sidney Marcus Boulevard, the possibility of exclusive bicycle lanes along Piedmont Road is well beyond the 2027 time frame for recommendations in this study. Ultimately, once the Southern Railroad bridge is replaced and right-of-way acquisition can occur from Pharr Road to Sidney Marcus Boulevard, it is recommended that this segment be widened to accommodate exclusive bicycle lanes from Peachtree Road to Lindbergh Drive.

The recommendations associated with this project are broken into two categories: 1. Before bridge replacement and right-of-way acquisition and 2. After bridge replacement and right-of-way acquisition. The following is a description of each of the two sets of recommendations.

Before bridge replacement and right-of-way acquisition –

Several neighborhood streets along both the east and west sides of Piedmont Road have been identified as possible designated bicycle routes. Because of on-street parking and right-of-way constraints, these bicycle routes would predominantly consist of signage guiding bicyclists through the area, not designated or exclusive bicycle lanes. The route selections were based on field observations of traffic volumes, speeds, and sight distance. Route selection was also based on logical north-south and east-west roadways that connect the area to other roadways in the area. It should be noted that the routes chosen have not been evaluated using a technical process. The routes chosen for study are shown graphically below and should be studied by the City of Atlanta as part of the Connect Atlanta Plan. This study recommends that the City of Atlanta creates a city-wide bicycle suitability factor scale that analyzes each of the suggested routes. Additionally, the City should identify adjacent roadways for logical bicycle travel that tie into the Piedmont corridor. Mathieson Drive, Shadowlawn Avenue, Pharr Road, Dale Drive, and Sharondale Drive are among the most suitable identified bicycle routes.

This project also includes recommending exclusive five-foot bicycle lanes on both the northbound and southbound sides of the Piedmont Road from Peachtree Road to Pharr Road. These bicycle lanes are included in Project C8, which consists of roadway widening and pedestrian improvements. Providing this section bicycle lanes before the southern portion of the corridor can accommodate bicycle lanes is recommended because there are two reasonable termini. The bike lanes will connect to the existing bicycle lane network along Peachtree Road to the north and will connect to the proposed bicycle lanes on Pharr Road (not included in this report’s recommendations) to the south.

While the portion of Piedmont Road from the Buckhead Loop to Peachtree Road is recommended to be widened in Project C7, this study does not recommend exclusive bike lanes along this portion of Piedmont Road. Instead, it is recommended that bicyclists be directed to use Peachtree Road’s bicycle lanes to travel to Tower Place Drive, which will be signed as a bicycle route. Cyclists can then access the Piedmont Center development and points northward via Tower Place Drive.
After bridge replacement and right-of-way acquisition –

As stated before, this study ultimately recommends the inclusion of exclusive bicycle lanes along Piedmont Road from Peachtree Road to Lindbergh Drive. The portion of Piedmont Road from Sidney Marcus Boulevard to Lindbergh Drive is recommended to be widened as part of Project C10. While at the time of construction, Project C10 is recommended to be void of bicycle lanes, wider lanes should be constructed, allowing for the inclusion of the lanes with restriping once the segment of Piedmont Road between Pharr Road and Sidney Marcus Boulevard can be widened to accommodate the lanes and the Southern Railroad bridge can be replaced. This restriping should occur when the entire segment from Peachtree Road to Lindbergh Drive is wide enough to accommodate the bicycle lanes.

Transportation Demand Management Projects

TDM1 – Zipcar

Zipcar recently merged with Flexcar and operates in many cities across the United States. The company provides satellite locations sprinkled throughout high density areas where a variety of cars can be rented at an hourly or daily rate (includes gas, insurance, and maintenance). Zipcar currently operates successfully in Downtown and Midtown Atlanta, making it reasonable to expect that the dense activity centers of Buckhead will support a successful program. Zipcar should be implemented in both the northern and southern activity centers.

TDM2 – TDM Education Campaign

Transportation Demand Management (TDM) is described as applying measures that influence traveler behavior for the purpose of reducing or redistributing travel demand. The primary purpose of TDM is to reduce the number of vehicles on the roadway network while providing a wide variety of travel options.

BATMA and the ARC currently provide incentive programs and information to commuters on TDM measures such as transit, walking, and biking options and incentives, carpooling, vanpooling, teleworking, and a guaranteed ride home. A marketing and education campaign should be initiated on a local or city-wide scale.

TDM3 – Congestion Monitoring Web Application

This study recommends creating a web-based Intelligent Transportation System (ITS) application providing real-time surface street congestion information to motorists that produces visual graphics and information much like the existing Georgia Navigator application does for the region’s freeway system. Technologies such as cellular telephone monitoring should be investigated to understand the capabilities of detecting speeds and congestion levels along all major Buckhead surface streets.

The intent is for commuters to make commute time decisions based on real-time traffic congestion periods, thus spreading out peak travel times and lowering the severity of congestion during any given point during the day. This system may be implemented on a local basis (Buckhead only) or city-wide (preferred).

Corridor Projects

C1 – Signal Timing Plan

A major signal timing plan for the entire study corridor is underway. This project consists of adjusting traffic signal timings (in conjunction with adjacent roadways) in order to reduce inefficiencies in processing vehicles. Since traffic signals become less synchronized and travel patterns change over time (creating unnecessary delay for motorists) this study recommends that a signal timing plan be performed for the Piedmont Road corridor every two to five years. The plan will consist of optimizing and coordinating traffic signals in such a way as to favor progression of vehicles along the corridor.

C2 – Signal Equipment Upgrades

Detectors are used to identify when vehicles are approaching a traffic signal in order to maximize efficiency. A traffic signal with properly working detectors may operate much better than one with broken detectors. It is estimated that approximately 75 percent of the detectors along the study corridor are currently broken. Replacement of the broken detectors would result in a noticeable increase in operation of the corridor and would eliminate inconvenient and unnecessary delay, especially during off-peak times. It is recommended that all broken detectors be replaced and signal timings be adjusted to accommodate for the new working detectors.

C3 – Speed Limit Reductions

The existing posted speed limit along most of the study corridor is 40 mph, with 35 mph posted in several areas. In order to provide a safer and more pleasing experience for pedestrians and bicyclists, it is recommended that speed limits be reduced in most areas. Speed limit recommendations are as follows:

- Buckhead Loop to Pharr Road – Reduce speed limit from 35 mph to 30 mph
- Pharr Road to Sidney Marcus Boulevard – Reduce speed limit from 40 mph to 35 mph
• Sidney Marcus Boulevard to Garson Drive – Reduce speed limit from 40 mph to 30 mph
• Garson Drive to Lambert Drive – Reduce speed limit from 40 mph to 35 mph

These speed limit changes should be implemented with the recommended corridor projects and occur when each project is constructed.

C4 – Way-Finding Signage

The Piedmont corridor lacks continuity and is confusing to those that may be new or visiting the area. A way-finding signage plan should be performed to provide consistent signage for major streets, transit stations, bus stops, and local attractions.

C5 – Streetscape Specifications

In efforts to make the corridor more functional and aesthetically pleasing, streetscape specifications should be developed. These specifications should provide a common design standard for new and modified traffic signals (mast arm, not span-wire), street furniture, and information signage. The specifications should be incorporated into all overlay districts (SPIDs) and applied to all new construction projects along the corridor.

C6 – Georgia Power Substation Screening

Two Georgia Power substations are located along the study corridor, one on the east side of Piedmont Road, south of East Paces Ferry Road, and one on the west side of Piedmont Road just north of Sidney Marcus Boulevard. These substations consist of very large equipment sheltered by a low brick wall. This project calls for additional vertical screening, such as large trees, to be provided along the walls that front Piedmont Road. While the northern substation is located well outside of the road’s right-of-way, the southern substation is located adjacent to the sidewalk. Further investigation needs to be performed for a solution for screening this substation.

C7 – Buckhead Loop to Peachtree Road (Capacity Improvement)

This portion of the corridor currently consists of a five-lane section with two northbound lanes, two southbound lanes, and exclusive left-turn lanes at traffic signals. Sidewalks exist on both sides of the road at varying widths. No furniture or buffer zone is present except at the recently completed Terminus office building. Piedmont Road from the Buckhead Loop to Peachtree Road will be widened from the existing five-lane section to a seven-lane section consisting of three northbound lanes, three southbound lanes, and exclusive left-turn lanes at traffic signals. Ten-foot sidewalks will be separated from the roadway by a five-foot furniture zone.

Three signals currently exist along this portion of roadway; one at the Buckhead Loop, one at Tower Place Drive, and one at Peachtree Road. It is recommended that one additional traffic signal be installed mid-block between the Buckhead Loop and Tower Place Drive (at the existing Hampton Inn and Tower Place parking deck driveways). Since access for Carson Lane to the north is recommended to be modified to prohibit left and through movements out (12), it is highly recommended that the parcel on the southwest corner of the Piedmont Road/Buckhead Loop/ Carson Lane intersection have shared access to the new signal through the existing Hampton Inn driveway.

It is also recommended that the Ivy Place and Lincoln building driveways be converted to right-in/ right-out operation. Access for the Ivy Place building is currently provided onto the Buckhead Loop via Tower Place Drive. The Lincoln building should gain access to Tower Place Drive so that it can be used as access for this building as well. The widening will also include a six-foot raised median between the Buckhead Loop and Tower Place drive. No median will exist between Tower Place Drive and Peachtree Road.

As this project is constructed every effort should be made to move overhead utilities underground where possible. The overhead Georgia Power main transmission lines will be relocated several feet to the west to accommodate the widening.
C8 – Peachtree Road to Pharr Road (Capacity Improvement)

This portion of the corridor currently consists of a six-lane section with shared left-turn lanes at several intersections and a raised concrete median. Sidewalks are provided on both sides of the roadway and average width of six feet. No buffer or furniture zone separates the sidewalk from the roadway. The segment is littered with driveways which attract drivers from all directions, many crossing over the existing four-inch high median. In anticipation of development along the western side of Piedmont Road, the boulevard as described in project C7 with a raised median is recommended for this portion of roadway. Northbound and southbound five-foot bicycle lanes are also recommended for this portion of roadway. Widening is recommended to occur generally along the center line of the road, with parcels on both the east and west side of the road absorbing some of the widening.

As stated before, this area currently consists of numerous driveways. It is recommended that driveways be consolidated where possible and as new development occurs along the western side of the road that access for these developments occurs along newly constructed roads connecting Piedmont Road to Maple Drive (NC3).

A five-foot furniture zone and ten-foot sidewalk is proposed along both sides of Piedmont Road in this location. The six-foot raised median will allow for pedestrian refuge at signalized intersections and discourage mid-block crossing.

This project also consists of construction of an additional northbound left-turn lane from Piedmont Road onto Pharr Road.

As this project is constructed every effort should be made to move overhead utilities underground where possible. The overhead Georgia Power main transmission lines will be relocated several feet to accommodate the widening.

C9 – Pharr Road to Sidney Marcus Boulevard (Capacity Improvement)

This portion of roadway intersects no other major arterials. Given the existing right-of-way constraints and adjacent land uses and narrow parcel size, widening of this section is not recommended. Acceptable operating conditions can be achieved with conversion of lanes. This study recommends converting the existing six lane cross-section to a cross-section consisting of two northbound lanes and three southbound lanes, with exclusive left-turn lanes at signalized intersections. This will be achieved by relocating the median to allow the northbound inside lane to be used as an alternating left-turn lane. The median will be constructed higher as to not allow vehicles to cross. Since limited right-of-way exists, it is expected that this segment will consist of six-foot sidewalks. Where possible, a five-foot furniture zone should separate the sidewalk from the roadway.

This new roadway alignment will decrease the number of rear-end crashes and provide a more fluid flow of vehicles through this relatively unobstructed portion of the corridor.

This project also includes widening from two to three southbound through travel lanes and installation of red light enforcement cameras at Sidney Marcus Boulevard.
C10 – Sidney Marcus Boulevard to Lindbergh Drive (Capacity Improvement)

The proposed solution to this six-lane section of roadway is to create a boulevard as described in project C8 (without bicycle lanes at initial construction). It is recommended that the roadway be widened to the west, where sufficient right-of-way has previously been donated by several properties in anticipation of the roadway widening. This alignment is also that which was represented in a plan incorporated in the ARC’s TIP several years ago (has since been pulled because of funding challenges).

The widening will also include wide lanes that may be narrowed in the future to accommodate exclusive bicycle lanes by restriping to allow for exclusive five-foot bicycle lanes and ten-foot travel lanes. This conversion should occur only after reconstruction of the existing Southern Railroad bridge (north of Miami Circle) can occur and when properties between Pharr Road and Miami Circle allow for roadway widening to accommodate the exclusive bicycle lanes.

A five-foot furniture zone and fifteen-foot sidewalk (as stated in SPI 15) are proposed along both sides of Piedmont Road in this location. The six-foot raised median will allow for pedestrian refuge at signalized intersections and discourage mid-block crossing.

C11 – Lindbergh Drive to Lambert Drive (Capacity Improvement)

This six-lane portion of roadway is recommended to undergo the lane conversion as described in project C9.

Intersection Projects

I1 – Piedmont Road/Roswell Road/Habersham Road Triangle

As discussed earlier, the Piedmont Road/Roswell Road/Habersham Road triangle currently operates poorly during the afternoon peak periods because of multiple factors. In order to relieve some of the largest issues with the triangle, the following is recommended:

- Increase northbound left-turn lane storage from Piedmont Road onto Habersham Road (new turn lane may extend south to The Manor at Buckhead driveway)
- Widen Roswell Road from Powers Ferry Road to Piedmont Road to accommodate a northbound left-turn lane from Roswell Road onto Powers Ferry Road the entire length of the segment
- Signalize Roswell Road/Powers Ferry Road intersection
- Install Red Light Enforcement cameras at all four above intersections and install “Do Not Block the Intersection” signs with pavement markings to emphasize the areas not to be blocked.

While the above recommendations will provide high value improvements to the area, it is recommended that the City investigate measures to create a more substantial long-term solution to this specific area (FH1). This area is plagued by traffic congestion caused by high traffic volumes on low capacity facilities. The long-term improvement should be developed within the context of a more broad study of city-wide and regional movement of people.
I2 – Piedmont Road at Buckhead Loop

The improvements to the Piedmont Road/Buckhead Loop intersection are as follows:

- Convert the westbound laneage to provide a third left-turn lane from Buckhead Loop onto southbound Piedmont Road (conversion of the center lane of the existing five-lane approach)
- Restrict eastbound left/through movement out of Carson Drive
- Install Red Light Enforcement cameras
- Reconstruct westbound right-turn lane from Buckhead Loop onto northbound Piedmont Road to require Buckhead Loop motorists to merge with Piedmont Road traffic

The above recommendations address several deficiencies with the intersection. First, the triple left-turn from the Buckhead Loop onto Piedmont Road will alleviate some of the heavy queuing that currently occurs. Project C7 will provide three southbound receiving lanes which will make it possible to provide the triple left-turn lanes. Restricting the eastbound egress to right-turn out only will allow the signal to operate much more efficiently. While this will reduce access out of the adjacent parcels (adjacent to Carson Drive) at this intersection, the proposed signalized intersection between the Buckhead Loop and Tower Place Drive (C7) will provide egress for these parcels. Efforts should also be made to provide access for the Cambridge at Buckhead apartments to the existing Securities Centre driveway to the north.

Reconstruction of the westbound right-turn lane from the Buckhead Loop to Piedmont Road will eliminate the existing merging conflicts associated with the office buildings to the north and the proposed red light enforcement camera will discourage vehicles turning right on red.

I3 – Piedmont Road at Tower Place Drive

In preparation of density increases in the northern activity center, this project calls for increasing capacity at Tower Place Drive. The project adds an additional westbound left-turn lane from Tower Place Drive onto southbound Piedmont Road (changes existing two-lane approach to a three-lane approach consisting of one dedicated left-turn lane, one dedicated through lane, and one dedicated right-turn lane)

I4A – Piedmont Road at East Wesley Road/Darlington Road (Interim)

Until more substantial changes can be made, this intersection should undergo relatively inexpensive changes to help pedestrian safety and prevent blocking of the intersection during peak congestion times.

- Restripe crosswalks and stop bars
- Install “Do Not Block Intersection” signs on the northbound and southbound approaches

I4B – Piedmont Road at East Wesley Road/Darlington Road (Long Term)

In order to increase both pedestrian and vehicular safety, as well as continue to the lane conversation as described in project C9, long-term changes to the intersection should be constructed as follows:

- Convert Darlington Road to right-in/right-out operation and remove from signal control
- On the north side of the intersection, relocate the existing median one lane to the east and extend further south to East Wesley Road
- Provide dedicated northbound and southbound left-turn lanes with protected signal phases
- Install a traffic signal at Elliott Circle (this provides better egress for the Peachtree Park Neighborhood)

It should be noted that this project can be constructed without the rest of the segment from Pharr Road to Sidney Marcus Boulevard having been constructed.
I5 – Miami Circle Relocation

Due to the high numbers of southbound left-turning vehicles from Piedmont Road onto Miami Circle and in an effort to increase safety, a southbound left-turn lane should be constructed. An existing MARTA bridge is located to the north of Miami Circle. This can be achieved by relocating Miami Circle approximately 150 feet to the south and relocating the impact attenuator closer to the MARTA bridge structure to the north. This will allow for a turn lane with approximately 100 feet of storage.

I6 – Lindbergh Drive Consolidation/Main Street Signal

The below changes should be made to Lindbergh Drive/Way and the adjacent Main Street intersection:

- Combine Lindbergh Drive/Lindbergh Way into one four-legged conventional intersection and remove the existing northern-most signal. Eliminate access to Piedmont Road where abandoned
- Install a traffic signal at Main Street (mid-block between Morosgo Drive and Lindbergh Drive). Construction of an east leg of this intersection should be considered when the parcels to the east are redeveloped. This provides a crosswalk for pedestrians accessing the Lindbergh Center MARTA rail station, enhances the street grid network, and allows full movement vehicular access to Main Street. The above changes will facilitate redevelopment of the adjacent properties, help traffic operations through the corridor, and provide a well-needed pedestrian crossing at the Main Street intersection.

System Projects

S1A – I-85/GA 400 Southbound to Northbound Connection (Interim)

The need for the I-85/GA 400 southbound to northbound interchange has been discussed in this report. In order to address the traffic congestion caused by the lack of these much needed ramps, the below high-value changes are recommended, that will provide much needed relief until ramps can be constructed:

- Add third left-turn lane from GA 400 southbound ramp onto Sidney Marcus Boulevard
- Widen Sidney Marcus Boulevard to three lanes eastbound from GA 400 ramps to Buford Highway (requires moving existing sidewalks to outside of GA 400 bridge supports)
- Add third eastbound left-turn lane from Sidney Marcus Boulevard onto Buford Highway
- Widen northbound Buford Highway from Sidney Marcus Boulevard to Cheshire Bridge Road from two to three lanes
- Add second northbound left-turn lane from Buford Highway onto Lenox Road
- Add third westbound left-turn lane from Cheshire Bridge Road onto Buford Highway
S1B – I-85/GA 400 Southbound to Northbound Connection (Long Term)

This report presents a strong case for the need for the I-85/GA 400 southbound to northbound interchange ramps. Construction of the ramps will separate freeway and surface street traffic and dramatically reduce delay along Sidney Marcus Boulevard, Buford Highway, and Cheshire Bridge Road. The project is currently in the ARC RTP (Envision6) and TIP and initial design concept and environmental steps are currently being conducted. A preliminary report performed by GDOT estimates that each of these ramps will be used by 31,000 vehicles each day.

S2 – I-85/GA 400 Southbound Merge Improvements

The deficiency that affects the study corridor with the most negative impact is that of the downtown connector (I-85/I-75) and the I-85/GA 400 southbound merge. As discussed earlier, when traffic congestion increases along I-85 (mainly during the afternoon peak periods), many motorists “ball-out” onto Piedmont Road at either the Buckhead Loop or at Sidney Marcus Boulevard. As a result, Piedmont Road has become the primary alternative to GA 400 during congested times.

Currently, GA 400 merges completely into I-85. Other merging options, as to allow GA 400 to maintain a lane, are strongly recommended. It is recommended that GDOT study the option to merge only one of the two southbound GA 400 lanes into southbound I-85 (as opposed to the existing geometry where both the southbound GA 400 lanes merge into southbound I-85). The other lane continues as the right-most southbound I-85 lane. This requires reducing southbound I-85 upstream by one lane.

S3 – I-85/Lindbergh Drive HOV Ramps

I-85 southbound off-ramps and northbound on-ramps currently exist at Lindbergh Drive. This recommendation completes the interchange by adding an HOV only I-85 southbound on-ramp and northbound off-ramp. These ramps would provide a much easier and less congested method for express bus traveling between the Buckhead area and areas south of Atlanta as well as from the I-75 corridor (T1).

New Connection Projects

NC1 – Buckhead Loop to Piedmont Center (New Connection)

The existing driveway for the MARSH building at the Buckhead Loop/Tower Place Drive intersection should be used as a shuttle and express bus connection to both the MARSH and Piedmont Center developments. The recommended route will utilize much of the existing driveway; however, a shuttle only portion of roadway will need to be constructed between the MARSH building and Piedmont Center.

NC2 – Piedmont Road to Roswell Road

The exact placement of this connection may occur at one of several places along the Piedmont corridor; however, it should occur somewhere between the two Piedmont Center driveways and near Securities Centre. Traffic volumes will most likely require traffic signals to be placed at its termini with both Roswell Road and Piedmont Road. This new roadway connection will reduce some of the delay at the Piedmont Road/Habersham Road/Roswell Road intersection by allowing northbound left-turning vehicles to turn left prior to the triangle. The construction of this connection will require the cooperation of several property owners.

NC3 – Piedmont Road to Maple Drive (two connections)

The parcels along the west side of the corridor from Peachtree Road to Pharr Road are prime for redevelopment. This project improves accessibility and mobility, provides safer conditions for pedestrians crossing Piedmont Road, and creates more street front retail opportunities by providing two new roadway and pedestrian connections between Piedmont Road and Maple Drive. The connections should be equally spaced between Peachtree Road and East Paces Ferry Road and median breaks with traffic signals should occur at their terminus with Piedmont Road. Traffic signals and capacity improvements along Maple Drive may be warranted.

The construction of these connections will require the cooperation of numerous property owners and must be coordinated between developers and the City as redevelopment occurs.

Regulatory Projects

R1 – Buckhead CID Extension/Special Assessment District

In order to provide a more comprehensive and coordinated corridor an additional method of local funding must be identified. Two ways to collect the money needed to perform the projects in this study and other local projects are the expansion of the Buckhead CID and/or the creation of a Special Assessment District. The Buckhead CID is allowed to collect funds from only commercial properties while a Special Assessment District would allow taxing all parcels, no matter what zoning designation.

As this study describes, the entire study corridor is interconnected and several of the recommended projects stretch the length of the corridor. For this reason, the overlay district should represent the entire corridor. With either option, the area covered by the chosen district should include at least, all parcels adjacent to Piedmont Road from Roswell Road to I-85.
R2 – Buckhead CID/BATMA DRI review

A Development of Regional Impact (DRI) is a proposed development that reaches a certain density threshold as defined by the ARC and GRTA. This recommendation would provide that a staff member from either the Buckhead CID or BATMA play an active role in the DRI review process for any proposed development within the boundaries of the Buckhead CID. The staff member would attend the DRI review meetings and provide feedback to GRTA for transportation recommendations with the goal of preserving the goals and recommendations of this study and others performed for the Buckhead area.

R3 – Zoning Ordinance Amendments (SPI 9, 12, and 15)

Several types of zoning ordinance changes are recommended as part of this study, both zoning overlay district expansions as well as specific additions to these ordinances. There are currently four zoning overlay districts (Special Public Interest, or SPI) in and around the study corridor: SPI-9 Buckhead Village, SPI-12 Buckhead/Lenox Stations, SPI-15 Lindbergh Transit Center, and SPI-19 Buckhead Peachtree Corridor.

SPI Expansion Recommendations

- SPI-9 to be extended to the commercial parcels along the west side of Piedmont Road from Peachtree Road to Pharr Road.
- SPI-12 to be extended to the commercial parcels along the west side of Piedmont Road from Buckhead Loop to Peachtree Road.

SPI zoning code should be revised to reflect the following additions:

- SPI-9
 - Shower facilities (as described in SPI-15)
 - Internal development bike and moped circulation improvements
 - Implement shared parking incentives
 - Provide stronger enforcement of Transportation Management Plan (TMP)
 - Require interparcel connections as development occurs

- SPI-15
 - Provide affordable housing
 - Reduce parking requirements and implement shared parking incentives
 - Provide stronger enforcement of TMP
 - Require interparcel connections as development occurs

R4 – Impact Fee Credit Structure

Impact Fees are imposed by the City on new developments and are currently based purely on land use and density. Private developers may get impact fee credit for improvements made on site that have a direct positive impact on the general public as well. In efforts to encourage more dense and transit oriented growth, incentives to private developers should be created to give impact fee credits for development that do the following:

- Unbundled and share parking, especially near MARTA rail stations
- Eliminate free parking
- Incorporating bus stops into development store front
- Making transit/pedestrian/bicycle connections to driveways serving adjacent properties

R5 – GA 400 Toll Policy Changes

A study of toll policy modifications by SRTA is currently underway. This study should be expanded to investigate advantages of toll pricing favoring express bus and HOV travel.

R6 – Side Street Maximum Signal Timing Policy Changes

Currently, many side streets and driveways use a large percentage of time on traffic signals along the Piedmont Road corridor. In order to reduce the delay on Piedmont Road and other main arterials caused by these side-streets, a city-wide standard should be created and enforced for maximum signal phase time given to any side-street that serves a private road or driveway.
Projects for Further Investigation by the City of Atlanta

FI1 – Piedmont Road/Roswell Road/Habersham Road Triangle Long Term Solution

Project FI1 will provide much needed relief to the Piedmont/Roswell/Habersham Road triangle; however, a more long term solution must be identified. Improvements to this triangle should be made with strong consideration of the effects the low capacity roads of West Paces Ferry Road, Habersham Road, and Powers Ferry Road have on the area.

The above roadways are currently operating at or near capacity, meaning that substantial improvements to the triangle will be overshadowed by the inability to process vehicles downstream. A comprehensive approach should be made by the City of Atlanta to understand more fully travel patterns and needs of the commuters utilizing these alternatives to the freeway system. Alternatives for Cobb County and northwest commuters such as express bus and commuter rail should be investigated further.

This study consisted of heavy involvement from neighborhood groups and technical analyses. A final solution for the triangle was initially developed and presented to the public; however, a solution was not agreed upon by all interested parties because of the impacts it had on the adjacent neighborhoods. The below items are recommended as a guide toward finding a long term solution:

- Create grid system around the Tuxedo Festival property and adjacent properties, creating options for motorists to maneuver through the area
- Add traffic signals at new intersections
- Increase various turning bay lengths
- Investigate TDM that reduces single occupant vehicular trips in this area
- Investigate express bus, commuter rail, and other commuter transit alternatives

The below drawing is the initial proposed recommendation for the triangle area.

The below sketch is the revised concept as a result of meeting with various neighborhood groups.

FI2 – Miami Circle Extension over GA 400

This study did not analyze the affects of making a connection of Miami Circle over GA 400 to Lenox Road via either Burke Road or Canterbury Road; however, an initial review of traffic volumes and patterns in the area suggest that this would be a beneficial connection. Due to the anticipated increase in southbound left-turning vehicles from Piedmont Road onto Miami Circle given this connection, a wider Norfolk Southern bridge would need to be constructed to allow for a longer turn-lane. The City of Atlanta should investigate this connection in context with the City’s broader local street network.
future conditions
(with recommended projects)
6.0 Future Conditions (With Recommended Projects)

The recommended projects in this study stem from the need for not only increased roadway capacity but more important, mobility balance. While the previous analyses in this report describe how the congestion for the general motorists along the corridor is expected to increase, improvements to the corridor must not be made that sacrifice the mobility and accessibility of those preferring to take transit, walk, or ride a bicycle. Furthermore, with the growth expected in the region, coupled with the lack of programmed roadway capacity in the area and more dense development trends, it is reasonable to expect that individuals living and working within the corridor will begin using these alternative modes.

In 2005, the Governor’s Congestion Mitigation Task Force (CMTF) was created to determine how projects are selected for implementation through the Fast Forward program and through the Regional Traffic Operations Task Force. Eleven criteria were decided upon to help GDOT, ARC, GRTA, and SRTA determine which projects will be given priority over others. The criteria that were developed are as follows:

1. Transportation demand management (TDM) measures
2. Traffic operational improvements
3. Measures to encourage high occupancy vehicle (HOV) use
4. Transit Capital improvements
5. Transit operational improvements
6. Measures to encourage the use of non-motorized modes
7. Congestion pricing
8. Growth management
9. Access management
10. Incident management
11. Intelligent transportation systems (ITS)

Each of the 47 recommended projects presented in this study specifically addresses at least one of the above congestion mitigation criteria. While the recommendations provide relief to all user groups of the corridor, some recommendations more fully support the above categories. For instance, conversion of the existing Piedmont Road laneage (from Pharr Road to Sidney Marcus Boulevard and from Lindbergh Drive to Lambert Drive/I-85) as part of Projects C9 and C11 will decrease congestion, provide much improved access management, and lower crash rates along the corridor. This project, along with all of the others, directly address mitigation criteria as defined by the CMTF.
In August 2006, the ARC Board adopted a framework that included the above criteria to use in prioritizing projects for federal transportation funding and inclusion in Envision6. The framework incorporates the Governor’s CMTF recommendation to implement a project selection process that weights congestion mitigation at 70 percent as well as ARC Board direction to develop a multimodal plan that supports the region’s development policies through improved integration of transportation and land use planning.

A technical analysis process was created to evaluate system expansion projects. The analysis reflects the 70 percent congestion criteria prescribed by the CMTF and the ARC Board guidance through the inclusion of four major components. The below analysis components estimate how well each project meets regional goals and objectives:

1. Recurring delay (50%) which occurs as routine traffic volumes exceed available roadway capacity or transit user benefits
2. Non-recurring delay (20%) which occurs as a result of traffic incidents
3. Environmental impact (15%) which measures a project’s proximity to six environmentally sensitive area types
4. Regional Development Plan policy support (15%) which measures the level a project supports ARC’s RDP policies based on project location and scope.

Since there is no one specific analysis tool that can be used to accurately evaluate the congestion impacts of both highway and transit projects, different analysis components were used to evaluate the congestion relief benefits of highway and transit projects. Only system expansion projects are subject to the above analysis components. Projects identified as system expansion projects are those that meet the following criteria:

1. System expansion projects in current Mobility 2030 RTP
2. Construction planned in long-range (2012 and later)
3. Within the MPO boundary
4. On the Regional Strategic Transportation System
5. Federal funding programmed

The recommended projects in this study are expected to have a major improvement on the Piedmont Road corridor and the region. Overall, the improvements as presented in this study provide enhanced transit service facilities, provide new pedestrian facilities, designate several areas where right-of-way is to be preserved for future bicycle lanes, balance traffic flows along the length of the corridor by reducing the severity of bottleneck intersections, improve safety by adding left-turn lanes at intersections, and so on. A discussion on projected 2027 conditions both with and without the recommendations for each of the most deficient areas is as follows.

Powers Ferry Road/Tuxedo Festival Shopping Center Driveway

During 2027 conditions, if the Powers Ferry Road intersection is left unsignalized, congestion both along Roswell Road and Powers Ferry Road is expected to increase to intolerable levels, with delay along eastbound Powers Ferry Road calculated just under one hour. The northbound left-turn movement is also expected to continue to lengthen and severely affect the Piedmont/Roswell/Habersham Triangle.

Signalization of the intersection, when coordinated with the three signals of the Piedmont/Roswell/Habersham Triangle will dramatically reduce levels of delay along Powers Ferry Road and the Tuxedo Festival Shopping Center driveway. It will also allow an opportunity for northbound left-turning vehicles to make a protected left-turn maneuver. With the installment of the traffic signal, the intersection is expected to operate at an LOS C, as opposed to LOS F if left untouched.

Piedmont/Roswell/Habersham Triangle

The primary problem with this set of intersections occurs during the afternoon peak hour with northbound left-turning vehicles traveling from Piedmont Road to Habersham Road (accessing points north and west of the city). This study recommends that the City investigate the negative impacts its two-lane “arterial” has on local traffic by creating congestion within the Buckhead community. The affect of the two lane West Paces Ferry and Habersham Roads in particular have is much like that of a water hose. The vehicles that cannot “fit” through the roads during the afternoon peak hour back onto northbound Piedmont Road, prohibiting other traffic from moving smoothly through the corridor.

One of the most high-value projects this study recommends is the extension of the northbound left-turn lane from Piedmont Road onto Habersham Road. This lane is currently approximately 75 feet long and can only accommodate approximately four tightly spaced vehicles. Extending the lane farther to the south, just north of the adjacent Piedmont Center driveway, will allow a storage length of 650 feet, long enough to store over 30 vehicles. The widening of Habersham Road between Roswell Road and Piedmont Road to four lanes (as part of the Tremont development) will also allow vehicles to navigate the area more efficiently. While this study recognizes that something more must be done in the future to address the deficiencies in transporting people to and from the northwest portions of the region, this improvement will reduce the friction between northbound traveling vehicles and allow individuals traveling to northbound Roswell Road and Powers Ferry Road the ability to do so more efficiently.

This study also recommends a connection between Piedmont Road and Roswell Road just south of the Manor at Buckhead Apartments driveway. This connection will relieve the intersections of Habersham Road with both Roswell Road and Piedmont Road of over 200 vehicles.
Buckhead Loop/Carson Drive

The recommended changes to this intersection include conversion of the westbound approach along Buckhead Loop from two left-turn and three right-turn lanes to three left-turn and two right-turn lanes. Additionally, the eastbound egress movements will be limited to a right-turn out only. Individuals wishing to travel east and north will have the opportunity to exit parcels in this area via a proposed shared driveway with the existing Hampton Inn Hotel to the south.

During 2027 conditions, without the recommended project, during the afternoon peak hour this intersection is projected to operate at an LOS F with an average of 473.5 seconds (8 minutes) of delay. This delay creates average queues stretching over 300 feet to the north, 1,400 feet to the east (nearly to GA 400), and 600 feet (half way to Tower Place Drive) to the south. With the recommended changes to the intersection, the intersection's operation is expected to increase substantially and will operate with an average of 242.1 seconds (4 minutes) of delay. This decrease in average delay will produce balancing of and substantial reductions in queues at the intersection. The queues are expected to stretch to 600 feet to the north, less than 700 feet to the east, and 450 feet to the south. The anticipated queue lengths before and after the recommended project are provided below in Table 19.

<table>
<thead>
<tr>
<th>Table 19</th>
<th>Future 2027 PM Peak Hour Without and With Recommended Project Queue Lengths Piedmont Road at Buckhead Loop</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Northbound</td>
</tr>
<tr>
<td>Without Recommendation</td>
<td>609'</td>
</tr>
<tr>
<td>With Recommendation</td>
<td>447'</td>
</tr>
</tbody>
</table>

As the table above describes, queues in all directions are much more balanced between each direction. The changes to this intersection will impact over 7,000 people during the afternoon peak hour, thus affecting many individuals. It is estimated that the intersection will see a reduction of over 480 person hours during the afternoon peak hour at this one intersection on the typical weekday.

Tower Place Drive

With the expected additional development in the northern activity center, such as Terminus, Tower Place Drive is expected to experience a substantial increase in volume in future years, increasing from approximately 400 vehicles to over 1,000 vehicles during the afternoon peak hour from 2007 to 2027. Future 2027 afternoon peak hour conditions anticipate that with no improvements, the intersection will operate at LOS F with an average of 352.6 seconds (6 minutes) of delay. By modifying the westbound approach with the construction of an additional left-turn lane, the intersection is expected to operate with an average of 213.0 seconds (4 minutes) of delay.

Peachtree Road

The Piedmont Road/Peachtree Road intersection is one of the busiest intersections along the corridor. With a cross-section consisting of eight lanes and a raised median, further widening may do more harm than good for pedestrians and bicyclists. Options of grade separation (creation of free-flow conditions) were investigated, but it was determined that the negative effects this would have on the pedestrian and streetscape environments made it undesirable to pursue.

The recent addition of the eastbound left-turn lane from Peachtree Road to Piedmont Road and the additional southbound right-turn lane from Piedmont Road to Peachtree Road (as part of the Peachtree Boulevard project) have made substantial improvements to the operation of the intersection. It should also be noted that this intersection plays an important part in balancing congestion through the corridor. This intersection serves as a metering mechanism that regulates the flow of vehicles to other areas along the corridor.

Sidney Marcus Boulevard

As discussed earlier, this intersection suffers from the effects of congestion along GA 400 during the afternoon rush hour. Through the restriping of I-85 and GA 400 and widening of Piedmont Road from Sidney Marcus Boulevard to Lindbergh Drive, traffic volumes will be managed more efficiently and queuing issues not as prevalent.

Morosgo Drive

Morosgo Drive lies within an area of Piedmont Road that is recommended to be widened to a seven lane section. During projected 2027 afternoon rush hour conditions, it is anticipated that this widening will allow the intersection to operate at an LOS C, with an average delay of 28.2 seconds, versus LOS F, with an average delay of 87.6 if no action is taken. This intersection is projected to serve over 3,500 vehicles during the Future 2027 afternoon rush hour conditions. This means that the recommendation saves a net of one person hour each weekday PM peak hour.
6.1 Future Conditions (With Recommended Projects) Operational Analysis

Many of the recommended projects in this study will have effects on the corridor that are difficult to measure. For this reason, of the 47 recommended projects, 16 were included in Future conditions models. The projects included in these models are as follows:

Corridor
- C1 – Signal Timing Plan (Included In All Models)
- C2 – Signal Equipment Upgrades
- C7 – Buckhead Loop to Peachtree Road (Capacity Improvement)
- C8 – Peachtree Road to Pharr Road (Capacity Improvement)
- C9 – Pharr Road to Sidney Marcus Boulevard (Capacity Improvement)
- C10 – Sidney Marcus Boulevard to Lindbergh Drive (Capacity Improvement)
- C11 – Lindbergh Drive to Lambert Drive (Capacity Improvement)

Intersection
- I1 – Piedmont Road/Roswell Road/Habersham Road Triangle
- I2 – Piedmont Road at Buckhead Loop
- I3 – Piedmont Road at Tower Place Drive
- I4B – Piedmont Road at East Wesley Road – Long Term
- I5 – Miami Circle Relocation
- I6 – Lindbergh Drive Consolidation/Main Street Signal

New Connections
- NC1 – Buckhead Loop to Piedmont Center (Shuttle/Express Bus Only)
- NC2 – Piedmont Road to Roswell Road
- NC3 – Piedmont Road to Maple Drive (Two Connections)

The above recommended projects were included in the Future 2012 and Future 2027 conditions traffic models and an operational analysis was performed. A comparison of the projected Future levels-of-service with those during the same time periods without improvements is provided in Table 20. Highlighted boxes indicate that the intersection operates at a poor level-of-service during a particular peak hour.

Table 20
<table>
<thead>
<tr>
<th>Intersection</th>
<th>AM Peak Hour</th>
<th>MD Peak Hour</th>
<th>PM Peak Hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roswell Road at Powers Ferry Road/Driveway (Unsignalized)</td>
<td>102.0</td>
<td>47.2</td>
<td>28.5</td>
</tr>
<tr>
<td>Roswell Road at Piedmont Road/Blackland Road</td>
<td>63.7</td>
<td>47.2</td>
<td>26.6</td>
</tr>
<tr>
<td>Piedmont Road at Habersham Road</td>
<td>200.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedmont Road at Piedmont Center/Driveway</td>
<td>11.6</td>
<td>11.0</td>
<td>36.5</td>
</tr>
<tr>
<td>Piedmont Road at Habersham Road</td>
<td>43.6</td>
<td>26.5</td>
<td>33.1</td>
</tr>
<tr>
<td>Piedmont Road at Piedmont Center/Securities Centre</td>
<td>13.5</td>
<td>29.2</td>
<td></td>
</tr>
<tr>
<td>Piedmont Road at Tower Place/Driveway</td>
<td>207.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piedmont Road at East Paces Ferry Road/Driveway</td>
<td>5.5</td>
<td>14.2</td>
<td>14.8</td>
</tr>
<tr>
<td>Piedmont Road at East Paces Ferry Road</td>
<td>11.6</td>
<td>8.6</td>
<td>12.9</td>
</tr>
<tr>
<td>Piedmont Road at Peachtree Drive</td>
<td>2.0</td>
<td>3.2</td>
<td>3.3</td>
</tr>
<tr>
<td>Piedmont Road at Pharr Road/Driveway</td>
<td>38.8</td>
<td>46.7</td>
<td>35.3</td>
</tr>
<tr>
<td>Piedmont Road at East Wesley Road/Darlington Road/Driveway</td>
<td>47.6</td>
<td>18.9</td>
<td>20.8</td>
</tr>
<tr>
<td>Piedmont Road at Miami Circle</td>
<td>3.8</td>
<td>9.5</td>
<td>12.8</td>
</tr>
<tr>
<td>Piedmont Road at Lindsey Place</td>
<td>73.1</td>
<td>46.0</td>
<td></td>
</tr>
<tr>
<td>Piedmont Road at Morosgo Drive</td>
<td>87.6</td>
<td>28.2</td>
<td></td>
</tr>
<tr>
<td>Piedmont Road at Lindbergh Drive</td>
<td>32.3</td>
<td>25.1</td>
<td>27.6</td>
</tr>
<tr>
<td>Piedmont Road at Lindbergh Way</td>
<td>14.9</td>
<td>17.4</td>
<td>22.3</td>
</tr>
<tr>
<td>Piedmont Road at Garson Drive</td>
<td>33.6</td>
<td>10.1</td>
<td>30.7</td>
</tr>
<tr>
<td>Piedmont Road at Lakeshore Drive/Driveway</td>
<td>39.0</td>
<td>17.6</td>
<td>25.7</td>
</tr>
<tr>
<td>Piedmont Road at Piedmont Circle/Lambert Drive/Buford Highway Off-Ramp</td>
<td>20.3</td>
<td>15.9</td>
<td>19.3</td>
</tr>
</tbody>
</table>

Notes: Delay measured for side street
*Side street delay is too lengthy to calculate
The below graphs provide the PM peak hour levels-of-service from the above table and depict the improvement of operation due to the recommended projects. In order to show the LOS of all the study intersections more clearly, the graphs’ maximum values are 180 seconds of delay. The intersections of Roswell Road at Powers Ferry Road, Piedmont Road at the Buckhead Loop, Piedmont Road at Tower Place Drive, and Piedmont Road at Peachtree Road have future levels of delay well over 200 seconds if not improved.

The graphs show that the recommended improvements to the corridor drastically improve most of the study intersections during Future 2012 and 2027 conditions.

A travel time comparison between Future 2012 and Future 2027 conditions without and with the recommended projects is provided in Tables 21 and 22. The shade of the boxes indicates either an increase or decrease in travel time and average speed along the corridor. Darker shaded boxes indicate that conditions deteriorate from the previous modeled year, while lighter shaded boxes indicate that conditions improved from the previous modeled year.

As described, if the recommended projects as described in this report are made to the Piedmont Road corridor, travel times will be dramatically improved for both the Future 2012 and 2027 conditions. Without these recommendations implemented, the 3.4 mile corridor is projected to experience an average travel time during the afternoon rush hour of 27.15 minutes; however, if the recommendations are implemented, this travel time is reduced to 16.75 minutes. This is a profound improvement made possible by the recommended projects that enhance the options for all user groups.

The below graph shows improved average travel times (averaged between the northbound and southbound directions) along the corridor for the PM peak hour condition. As shown, the recommended projects are expected to reduce the average travel time along the corridor during the PM peak hour by more than seven minutes during Future 2012 conditions and more than ten minutes during Future 2027 conditions.

Table 21
Corridor Travel Time for 2012 (Between Roswell Road at Powers Ferry Road and Piedmont Road at Piedmont Circle/Lambert Drive)

<table>
<thead>
<tr>
<th>Analysis Year</th>
<th>Future 2012 Without Improvements</th>
<th>Future 2012 With Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Peak Hour</td>
<td>SB</td>
<td>NB</td>
</tr>
<tr>
<td>PM Peak Hour</td>
<td>SB</td>
<td>NB</td>
</tr>
<tr>
<td>Delay (seconds)</td>
<td>18.1</td>
<td>15.0</td>
</tr>
<tr>
<td>Average Speed (mph)</td>
<td>15.3</td>
<td>15.7</td>
</tr>
</tbody>
</table>

Table 22
Corridor Travel Time for 2027 (Between Roswell Road at Powers Ferry Road and Piedmont Road at Piedmont Circle/Lambert Drive)

<table>
<thead>
<tr>
<th>Analysis Year</th>
<th>Future 2027 Without Improvements</th>
<th>Future 2027 With Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Peak Hour</td>
<td>SB</td>
<td>NB</td>
</tr>
<tr>
<td>PM Peak Hour</td>
<td>SB</td>
<td>NB</td>
</tr>
<tr>
<td>Delay (seconds)</td>
<td>26.0</td>
<td>28.3</td>
</tr>
<tr>
<td>Average Speed (mph)</td>
<td>7.8</td>
<td>7.2</td>
</tr>
</tbody>
</table>

NB – Northbound
SB – Southbound
opinion of probable construction cost
7.0 Opinion of Probable Construction Cost

A cost analysis was performed for the recommended projects. The estimated yearly operating costs for the implementation of the projects total over $40 million while the capital costs total over $200 million. The consultant’s opinion of cost of specific projects is provided in Table 23. The table represents an opinion prepared by Kimley-Horn and Associates about the probable cost to acquire right-of-way and build each project based on a set of assumptions. MARTA transit frequency increase costs were calculated based on the 2006 National Transit Database and estimates associated with GRTA Xpress bus service were provided by GRTA. As a consultant, Kimley-Horn does not control any of the factors that affect the cost of right-of-way or construction. In fact, over the past several years the cost of materials used in construction and the cost of gasoline have risen much faster than in recent history, by as much as 40 percent.

The table lists cost in constant year 2007 dollar figures. An escalation factor to account for inflation is advised but not included. Also, the table does not include other costs such as design fees or the cost to finance and provide administration of projects. Each opinion was increased by 5 to 10 percent to account for the additional cost required to maintain existing traffic during construction. Another 20 percent was added to each opinion to serve as a contingency. The cost to conduct utility relocations (but not burial) is included at an assumed cost of $1 million per mile. The cost to build new two-lane “complete street” connections is assumed to be $3 million per mile. Right-of-way costs are estimated with an assumed $95-$110 per square foot to acquire property and $10-$11 per square foot to obtain temporary construction easement. Easements are obtained for temporary purposes so that construction equipment and labor can efficiently build the project. Permanent easements are sought to allow public agencies to maintain sidewalks and other amenities adjacent to property so that owners can have the functional use of the facilities once construction is complete. This explains why the cost to obtain an easement is assumed to be only one-tenth the cost of right-of-way acquisition.

In comparison, the four-year statewide transportation improvement program estimate is $9.46 billion for GDOT which equates to about $2.36 billion each year. The total 25-year estimate for ARC’s Regional Transportation Plan (“the Blueprint”) is $67 billion. The estimate for improvements along Piedmont Road is about eight percent of the annual GDOT budget, or two percent of the Department’s four-year statewide improvement plan. In the context of the Atlanta region’s 25 year plan, the Piedmont Road estimate is less than one percent of the entire ARC plan estimate.
Funding Sources

Table 23: Opinion of Probable Construction Costs

<table>
<thead>
<tr>
<th>Project</th>
<th>ROW Cost</th>
<th>Construction Cost</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>N/A</td>
<td>N/A</td>
<td>$8,100,000</td>
</tr>
<tr>
<td>T2</td>
<td>N/A</td>
<td>N/A</td>
<td>$1,100,000</td>
</tr>
<tr>
<td>T3</td>
<td>N/A</td>
<td>N/A</td>
<td>$9,000,000</td>
</tr>
<tr>
<td>T4</td>
<td>N/A</td>
<td>N/A</td>
<td>$40,500,000</td>
</tr>
<tr>
<td>T5</td>
<td>N/A</td>
<td>$550,000</td>
<td>$550,000</td>
</tr>
<tr>
<td>T6</td>
<td>N/A</td>
<td>N/A</td>
<td>$50,000</td>
</tr>
<tr>
<td>T7</td>
<td>N/A</td>
<td>$4,200,000</td>
<td>$7,300,000</td>
</tr>
<tr>
<td>P1</td>
<td>N/A</td>
<td>$7,700,000</td>
<td>$7,700,000</td>
</tr>
<tr>
<td>P2</td>
<td>N/A</td>
<td>$1,000,000</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>P3</td>
<td>N/A</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
</tr>
<tr>
<td>B1</td>
<td>N/A</td>
<td>$3,100,000</td>
<td>$3,100,000</td>
</tr>
<tr>
<td>P4</td>
<td>N/A</td>
<td>N/A</td>
<td>$715,000</td>
</tr>
<tr>
<td>P5</td>
<td>N/A</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>B2</td>
<td>N/A</td>
<td>$55,000</td>
<td>$55,000</td>
</tr>
<tr>
<td>T8</td>
<td>N/A</td>
<td>N/A</td>
<td>$50,000</td>
</tr>
<tr>
<td>T9</td>
<td>N/A</td>
<td>$3,100,000</td>
<td>$3,100,000</td>
</tr>
<tr>
<td>P6</td>
<td>N/A</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>T10</td>
<td>N/A</td>
<td>N/A</td>
<td>$50,000</td>
</tr>
<tr>
<td>T11</td>
<td>N/A</td>
<td>N/A</td>
<td>$50,000</td>
</tr>
<tr>
<td>T12</td>
<td>N/A</td>
<td>$7,000</td>
<td>$7,000</td>
</tr>
<tr>
<td>T13</td>
<td>N/A</td>
<td>$700,000</td>
<td>$700,000</td>
</tr>
<tr>
<td>I1</td>
<td>N/A</td>
<td>$2,800,000</td>
<td>$2,800,000</td>
</tr>
<tr>
<td>I2</td>
<td>N/A</td>
<td>$500,000</td>
<td>$500,000</td>
</tr>
<tr>
<td>I3</td>
<td>N/A</td>
<td>$400,000</td>
<td>$400,000</td>
</tr>
<tr>
<td>I4A</td>
<td>N/A</td>
<td>$7,000</td>
<td>$7,000</td>
</tr>
<tr>
<td>I4B</td>
<td>N/A</td>
<td>$700,000</td>
<td>$700,000</td>
</tr>
<tr>
<td>I5</td>
<td>N/A</td>
<td>$4,700,000</td>
<td>$4,700,000</td>
</tr>
<tr>
<td>I6</td>
<td>N/A</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
</tr>
<tr>
<td>I7</td>
<td>N/A</td>
<td>$1,600,000</td>
<td>$1,600,000</td>
</tr>
<tr>
<td>NC1</td>
<td>N/A</td>
<td>$200,000</td>
<td>$200,000</td>
</tr>
<tr>
<td>NC2</td>
<td>N/A</td>
<td>$1,200,000</td>
<td>$1,200,000</td>
</tr>
<tr>
<td>NC3</td>
<td>N/A</td>
<td>$1,800,000</td>
<td>$1,800,000</td>
</tr>
<tr>
<td>S1A</td>
<td>N/A</td>
<td>$3,500,000</td>
<td>$3,500,000</td>
</tr>
<tr>
<td>S1B</td>
<td>N/A</td>
<td>$26,800,000</td>
<td>$26,800,000*</td>
</tr>
<tr>
<td>S2</td>
<td>N/A</td>
<td>$1,000,000</td>
<td>$1,000,000</td>
</tr>
<tr>
<td>S3</td>
<td>N/A</td>
<td>$3,500,000</td>
<td>$3,500,000</td>
</tr>
<tr>
<td>S4</td>
<td>N/A</td>
<td>$3,500,000</td>
<td>$3,500,000</td>
</tr>
<tr>
<td>S5</td>
<td>N/A</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>S6</td>
<td>N/A</td>
<td>$1,400,000</td>
<td>$1,400,000</td>
</tr>
<tr>
<td>S7</td>
<td>N/A</td>
<td>$22,100,000</td>
<td>$22,100,000</td>
</tr>
<tr>
<td>S8</td>
<td>N/A</td>
<td>$8,000,000</td>
<td>$8,000,000</td>
</tr>
<tr>
<td>S9</td>
<td>N/A</td>
<td>$4,000,000</td>
<td>$4,000,000</td>
</tr>
</tbody>
</table>

*Note: The total cost for S1B includes an additional $26,800,000 for future investigation by the city.
8.0 Funding Sources

The Piedmont Area Transportation Plan will be a dynamic plan, if for no other reason than the “fluid”
nature of securing funding to implement its recommendations. The challenge of funding planned
programs and projects is more difficult because of the changing nature of finances and the strong
influence of politics and shifting priorities.

Obtaining funds for projects is a two-fold exercise. First, there is the need to know what funding
resources are available and what projects are well-matched to the criteria for each funding resource.
Second, there is a need to build and maintain relationships with funding agencies and potential
partners. The following provides a summary of the funding resources which will be potentially
applicable for the Piedmont Area Transportation Plan, and a list of next steps for fundraising.

8.1 Federal

Piedmont Road is designated as Georgia State Route 237. Roswell Road is designated as U.S.
Highway 19 and Georgia State Route 9. A considerable amount of the funding for the construction,
improvement, operation, and maintenance of infrastructure comes from monies distributed by the
Federal Government through the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A
Legacy for Users (SAFETEA-LU). This legislation provides revenue sources through many programs
including the following:

- Surface Transportation Program (STP)
- Congestion Mitigation and Air Quality Improvement Program (CMAQ)
- High Priority Projects (HPP)

Surface Transportation Program (STP)

The federal STP provides flexible funding that may be used by States and localities for projects on
any Federal-aid highway including high accident/high congestion intersections. Funds are distributed
among the States based on lane-miles of Federal-aid highways, total vehicle-miles traveled on those
Federal-aid highways, and estimated contributions to the Highway Account of the Highway Trust
Fund. Each state must set aside a portion of their STP funds (10 percent or the amount set aside in
2003, whichever is greater) for transportation enhancement activities.

STP Set-aside for Transportation Enhancements (TE)

Georgia’s Transportation Enhancement Program (TE) is one of the most successful TE programs in
the nation. Funds provided through the TE program are eligible for use in the provision of facilities
for pedestrians and/or bicycles and for the provision of safety and educational activities for pedestrians.
and bicyclists. To be eligible for funding, projects must be sponsored by a governmental body and upon selection the project must be included in the TIP. Under this program, the sponsoring body is required to match 20% of the cost and the remaining 80% will be covered by designated federal funds administered through the state. There is a $1 million per project maximum per State Transportation Board policy. As shown in Table 23, there are 19 projects at or under $1 million for the plan, including two bicycle/pedestrian projects, two intersection improvements, and restriping of the merge area where Georgia 400 joins southbound I-85.

Congestion Mitigation and Air Quality Improvement Program (CMAQ)

Money for this program comes from the Federal Government and is allocated to states based on the population living within ozone and carbon monoxide non-attainment areas and the relative severity of the regions’ air quality problems. Under this program, the sponsoring body is required to match 20% of the cost and the remaining 80% will be covered by designated federal funds administered through the state. Bicycle and pedestrian facility programs are eligible for CMAQ funding. The Federal Highway Administration (FHWA) requires a demonstration of emissions benefits that will come from implementation of the project.

For the metro Atlanta area, the air quality monitoring for such a project is performed by ARC and projects are selected by the ARC along with GDOT, the Environmental Protection Agency (EPA), and GRTA. Typically, bicycle and pedestrian projects have a lower chance of being selected because of their relatively low potential effect on emission levels. However, pedestrian and bicycle projects have been funded when they were heavily transportation-focused such as providing access to transit stops and stations. Clearly, the recommendations in this study that address sidewalk and other walkway improvements to bus stops and the Buckhead MARTA station should be considered.

High Priority Projects (HPP)

Through extensive interaction with the region’s Congressional Delegation, the Buckhead CID may be able to add Piedmont Road to the list of projects for federal discretionary (i.e. earmark) funding. Reauthorization of SAFETEA-LU is scheduled for the federal fiscal year beginning in 2009.

Grant Anticipation Revenue Vehicle (GARVEE)

Grant Anticipation Revenue Vehicles (GARVEE) allow agencies to select and designate projects to be funded for accelerated construction from bond proceeds that are approved by the Federal Highway Administration (FHWA) and the Regional Transportation Planning Agency, or the ARC in the case of Atlanta. This funding source can be applied to highway or transit project and is used by the Georgia SRTA as a major funding source.

8.2 State

There are also some funding mechanisms provided through the State of Georgia that are distributed by other organizations including the following:

- Highway Safety Funds (administered by GDOT District 7)
- Local Development Funds (administered by the Georgia Department of Community Affairs, or DCA)
- Operational Lump Sum Funds (administered by GDOT’s Office of Traffic Safety and Design)

The ability to obtain funds is determined by effective participation in the transportation planning processes of the Atlanta region. In most instances, the process attempts to balance regional need with available funds, which it does by evaluating potential projects for funding. Criteria for securing these funds are related to eligibility, need (both local and regional) and ability to achieve the goals of the funding category. There is a clear advantage for communities that have their projects “ready” prior to requesting funds. Readiness is achieved by local governments and community improvement districts (CID) that assume proactive action-oriented steps toward designing their projects with their own funds and then requesting federal and state financial assistance with only one construction phase.

Another way to approach the issue of accessing federal and state funds is to fully understand the bigger picture needs and desires of the funding agencies. There is tremendous market demand for innovative answers to the region’s pressing issues, including congestion and continued growth in vehicle-miles-traveled (VMT). If a local government or CID approaches these issues with a fresh perspective, political will, and some local money to start the process, and follows up with strategic discussions with the funding agencies, there is potentially an opportunity to become a pilot for new and improved transportation planning and investing.

Following is a brief description of potential suitable funding sources to implement the Piedmont Road plan:

Highway Safety Funds

The Governor’s Office of Highway Safety provides funding for safety-related programs including pedestrian and bicycle projects that improve safety along or across roadways. State grants are available for up to three years with the first year being 100% funded, the second year requiring a 20% match and the final year requiring a 40% match. Funding is generally prioritized by crash frequency.

This funding source allows for GDOT discretion. It may be a good funding source for various intersection improvements along Piedmont Road and the short section of Roswell Road that is included in this study. Here, the improvements to safety and traffic flow may be enough to qualify for these funds, which are administered less formally by GDOT.
Local Development Fund

The Local Development Fund (LDF) program is administered by the DCA. Pedestrian improvements such as sidewalk improvements in historic districts or ADA-related improvements may be eligible for funding. The sponsoring organization (City of Atlanta or Buckhead CID) would be required to commit local funds or in-kind contributions to match the state funding.

Operational Lump Sum Fund

The Operational Lump Sum program allocates up to $5 million each year to relatively low cost/high value projects throughout the state. Funds are administered by GDOT’s Office of Traffic Safety and Design who request solicitations from districts and are intended to provide up to $750,000 for preliminary engineering, right-of-way, and construction costs for projects that address intersection capacity and congestion improvements. The sponsoring organization is required to commit local or private funds to any costs of the project exceeding $750,000.

8.3 Local

Quality of Life Bonds

General Obligation Bonds (GOs) are direct general obligations secured by the full faith, credit, and taxing powers of the City of Atlanta. GOs are used to raise funds for the City’s capital improvements that benefit the entire community, i.e. road repairs. These improvements typically do not produce revenues. Principal and Interest are payable from an ad valorem tax levied on all taxable property within the City.

The City is authorized to issue up to $8 million in General Obligation Bonds each fiscal year. A City ordinance must be passed to issue GO Bonds. The City is required to have a referendum passed by its citizens if its wishes to issue GO bonds greater than $8 million. In 2000, a referendum was passed by Atlanta’s voting citizens, which authorizes the city to issue $150 million in Quality of Life Bonds. With increasing urbanization of the areas in and around the City, there is a pressing need to develop and preserve areas and transportation ways that encourage neighborhood livability, pedestrian mobility and a general improvement of the quality of life in our urban setting. This bond issue embraces all of these ideals and objectives and allows the City to utilize this base of funds to leverage against the Department of Transportation, Housing and Urban Development, and private funding to provide many improvements to the City’s green space and alternative transportation systems.

Guaranteed Revenue Bonds (GRB)

Guaranteed Revenue Bonds (GRB) are municipal bonds supported by the revenue from a specific project, such as a toll roadway, which produces revenues. These bonds operate much like that of GOs, with the main difference being that they can be repaid by a limited number of sources. The main advantage of using GRBs to fund projects is that they allow the entity to avoid reaching legislated debt limits. This is a source of funding widely used by the Georgia SRTA for the portion of Georgia 400 from I-285 to I-85.

Special Assessment District

A Special Assessment Tax District collects tax dollars in much the same way as a Community Improvement District; however, taxes are levied on both commercial and residential property owners. The money is collected and distributed within the district by the City of Atlanta. This may be a visible option for raising dollars for local projects to the corridor. The Peachtree Corridor Taskforce is currently seeking this same type of funding strategy for the Peachtree Streetcar project in Downtown and Midtown Atlanta.

Buckhead Community Improvement District (CID)

The Buckhead CID is a special district in which commercial property owners pay a self-imposed tax for improvements. The mission of the Buckhead CID is to leverage local tax dollars with city, state, and federal grants to attract new investment in Buckhead and promote sustainable, livable growth. The recently completed Peachtree Boulevard project in Buckhead is a prime example of the significance of the CID.

Impact Fees

The City of Atlanta collects impact fees from developers to pay for the proportionate share of the cost of street “improvements which is reasonably related to the service demands and needs of the [development] project within a defined service area.”

In May 2007, the Governor signed the Georgia Development Impact Fee Law which was House Bill 232 introduced by Representative Edward Lindsey (representing Georgia General Assembly District 54 that includes Buckhead) that amended Title 36 of the Official Code of Georgia as it relates to the collection of development impact fees. The changes modify the definition of eligible project improvements such that “the character of the improvement shall control a determination of whether an improvement is a project improvement [to be funded by a developer] or system improvement [to be funded by sources other than impact fees] and the physical location of the improvement on site or off site shall not be considered determinative of whether an improvement is a project improvement or a system improvement. If an improvement or facility provides or will provide more than incidental service or facilitates capacity to persons other than users or occupants of a particular [development] project, the improvement or facility is a system improvement. No improvement or facility included in a plan for public facilities approved by the governing body of the municipality or county shall be considered a project improvement.” The law goes on to further define eligible project improvements as “roads, streets, and bridges, including rights of way, traffic signals, landscaping, and any local components of state or federal highways.”
Tax Allocation District

A Tax Allocation District (TAD) funds infrastructure projects in a targeted growing area with specific boundaries that are legally defined. A TAD finances projects by issuing bonds that are repaid in the future from increases in property tax revenue. A linkage is created in that the infrastructure spurs an increase in tax-paying business, residential, and land development. New pedestrian facilities, streetscapes, and bikeways are typical TAD projects in an activity center like Buckhead. The ADA serves as a redevelopment agent for all TADs formed within the City of Atlanta. Six such TADs have been established:

- Westside
- Atlantic Station
- Perry-Bolton
- Princeton Lakes
- Eastside
- Beltline

The Beltline is the only existing TAD that coincides with the Piedmont Road study area. The Beltline is a $2.8 billion redevelopment project that proposes a network of public parks, multi-use trails, and transit along a historic railroad corridor circling downtown and connecting many neighborhoods including the Lindbergh area. Key attributes of the Beltline include:

- Nearly 1,300 acres of new greenspace and parks
- 33 miles of multi-use trails
- A 22-mile loop of transit
- Approximately 30,000 new jobs in 20 economic development areas
- More than 5,600 affordable workforce housing units
- Touches and connects 45 neighborhood
- Investments in pedestrian access, streetscapes, public art, historic preservation, and environmental cleanup

Through this investment, the City hopes to encourage more sustainable development patterns and improve the quality of life for all Atlanta residents.

8.4 Partnering Agencies

The implementation of the recommended projects as listed in this report will require multiple funding sources and cooperation between many Federal, State, and local agencies, as well as private sector interests. The below groups are those identified as equipped to utilize the funding sources as described above to lead the charge on taking on the recommendations as described in this report:

- Beltline, Inc.
- Buckhead Community Improvement District (Buckhead CID)
- City of Atlanta (CoA)
- Cobb Community Transit (CCT)
- Georgia Department of Transportation (GDOT)
- Georgia Regional Transportation Authority (GRTA)
- Gwinnett County Transit (GCT)
- Georgia Power
- Metropolitan Atlanta Rapid Transit Authority (MARTA)
- Private developers and property owners
- State Road and Tollway Authority (SRTA)
action plan
9.0 Action Plan

Some of the implementation steps identified in this section seek to provide the conditions under which the plan vision can be achieved, by way of providing necessary public investments and the development of appropriate programs, policies, projects, and other actions.

9.1 Controlling Factors

The implementation of the Plan will depend on action being taken to:

- Revise existing regulations
- Undertake more detailed studies to resolve and explore the constraints and opportunities identified by this plan
- Improve transportation facilities and service

The implementation steps identified in this section will be executed in phases and will be subject to a variety of factors that will determine their timing. These factors include the following:

1) The availability of the personnel and financial resources necessary to implement the specific proposals
2) Whether an implementation step is a necessary independent project or program, or a component of the rational evaluation of a new development project
3) The interdependence of the various implementation steps, in particular, the degree to which implementing one task is dependent on the successful completion of another project or program
4) The relative severity of the problem that a particular action is designed to remedy

9.2 Studies and Advocacy

As an initial step to implementation and in order to better develop several of the recommended projects, several studies should be performed and advocacy efforts be made. Each of the studies should be initiated in the near term and advocacy efforts should be made on an ongoing basis. They are as follows:

Transit
SA1 – Express Bus Service Enhancements
SA2 – Activity Center Circulator Expansion
SA3 – MARTA – Increase Frequencies
SA4 – Transit Signal Priority
SA5 – Queue Jumper Lanes
The following provides detailed descriptions of each recommended study or advocacy effort.

SA1 – Express Bus Service Enhancements

This study includes the investigation of the cost-effectiveness of creating new express bus routes serving key destinations in Buckhead from Cobb, DeKalb and Gwinnett Counties. Study the specific drop-off locations in Buckhead that would maximize bus ridership, safety, and convenience. This study recommends that at a minimum, express bus should serve the northern activity center (Piedmont Center office park and the Tower Place complex) and points east along Peachtree Road. Secure funding to initiate express service.

SA2 – Activity Center Circulator Expansion

Study methods to restore service and funding for the “buc” shuttle following anticipated significant federal funding cutbacks. While funding shortfalls exist, this study recommends expansion of service both through higher frequencies and physical expansion to the south and west.

SA3 – MARTA – Increase Frequencies

MARTA should evaluate the recommendations for increased frequencies as listed in this study. These increased frequencies should be studied in terms of their impacts to the regional MARTA system.

SA4 – Queue Jumper Lanes

This study recommends queue jumper lanes at several locations along the Piedmont Road corridor. Available right-of-way will need to be investigated and negotiations begun before valuable property is developed. The City of Atlanta should also investigate other corridors in which queue jumper lanes would be beneficial to transit activity (i.e. Peachtree Road).

SA6 – Bicycle Route Designation

As stated in this report, it is recommended that the City of Atlanta investigate possible bicycle routes that utilize existing neighborhood street adjacent to Piedmont Road. A thorough study should be performed to take the recommendations from this report and determine their feasibility based on suitability factors created by the City.

SA7 – Zipcar

Advocacy efforts should be made to rally support for Zipcar to implement service in Buckhead. Given the efforts as presented in this report to provide express bus service and encourage transit use, Zipcar will have an increasingly important role in transporting people in Buckhead that may not have driven to the area.
SA8 – TDM Education Campaign

Transportation Demand Management strategies are currently in place and organized by BATMA and the ARC. This study will include gathering an inventory of existing effective TDM strategies and involved gathering additional information in regards to effective programs from other peer cities. This study should determine funding sources for a major TDM campaign to be organized by BATMA. Discussions should be started between BATMA and the City of Atlanta to implement this as a city-wide initiative.

SA9 – Congestion Monitoring Web Application

While the Georgia Navigator performs well at collecting congestion information on the region’s freeway system, complete and accurate surface street information is somewhat harder to determine. The technology to support this project should be investigated for practical use on Buckhead’s streets and discussions should begin with the City to determine funding sources and implementing the program in phases.

SA10 – I-85/GA 400 SB to NB Connection – Interim

While this study reviewed traffic volumes along Sidney Marcus Boulevard, Buford Highway, and Cheshire Bridge Road, a complete traffic analysis should be performed for the area in coordination with the proposed Buford Highway MARTA bus rapid transit.

SA11 – I-85/GA 400 SB to NB Connection – Long Term

A study is currently under way by GDOT to determine feasibility and placement of the proposed ramps. This report stresses the severe need for the ramps and it is recommended that advocacy efforts from local agencies and community groups continue to support the project.

SA12 – I-85/GA 400 SB Merge Improvements

This report recommends restriping southbound I-85 to accommodate an improved merge with GA 400. While it is anticipated that this would improve traffic conditions along GA 400, a more thorough study should be performed to determine the exact effect this would have on congestion along I-85 north of the merge.

SA13 – I-85/Lindbergh Drive HOV ramps

This report recommends HOV ramps at Lindbergh Drive onto southbound I-85 and off of northbound I-85. Additional due diligence should be performed for the ramps and initial steps should be taken to begin the design process.

SA14 – Buckhead Loop to Piedmont Center (Shuttle/Express Bus Only)

This recommendation is intended to provide direct access for shuttles and busses to the Buckhead MARTA rail station. A study should be performed to determine circulation of the proposed express bus service through the Piedmont Center site. The existing parking structure should be investigated for structural sufficiency and an express bus route which serves Piedmont Center should be programmed before any construction on the connection occurs.

SA15 – Piedmont Road to Roswell Road

The challenge with this much needed connection is alignment within the existing commercial and residential parcels. A more thorough traffic study (including an origin and destination study) should be performed to determine the exact amount of traffic expected to use the facility. Discussions with property owners should also be initiated.

SA16 – Piedmont Road to Maple Drive (Two Connections)

These two recommended connections provide a great benefit to the area south of Peachtree Road and create a more appropriate redevelopment infrastructure along the corridor. Advocacy efforts should be made to work with developers as the parcels are redeveloped to ensure that the connections are made.

SA17 – Buckhead CID Extension/Special Assessment District

A study should be performed to impacts of an extension of the Buckhead CID south to I-85. The benefits of implementing a special assessment district should also be investigated, as well as other local funding sources.

SA18 – Buckhead CID/BATMA DRI Review

The Buckhead CID and BATMA should investigate methods of participation in the DRI Review process and determine appropriate staffing levels to accommodate the additional demand on the organizations.

SA19 – Zoning Ordinance Amendments (SPI 9, 12, and 15)

Since amendments to SPI ordinance is a long process, it is recommended that initial advocacy efforts be made to begin discussions with NPUs to discuss the changes as described in this report.
SA20 – Impact Fee Credit Structure

This report outlines changes to the impact fee credit structure. It is recommended that discussions with the City of Atlanta begin immediately (as part of the Connect Atlanta Plan).

SA21 – GA 400 Toll Policy Changes

SKTA is currently undergoing a study on toll policy. It is recommended that advocacy efforts be made that reflect the recommendations as outlined in this report.

SA22 – Side-Street Maximum Signal Timing Policy Changes

Additional data should be collected to gain a better understanding of signal timing for driveways along major corridors within the City. If this data proves that side-streets are currently allocated a large percentage of signal time during peak hours, efforts should be made to create a city-wide standard for maximum side-street time given to any signal along a major corridor.

SA23 – Piedmont Road/Roswell Road/Habersham Road Triangle Long Term

This report identifies interim measures that will improve traffic operations of the intersection cluster, however more work is needed to determine a long term solution. It is recommended that the City of Atlanta include a study of this area (in the context of the region’s deficiencies) in the Connect Atlanta Plan.

SA24 – Miami Circle extension over GA 400

This study aims to make connections where they currently do not exist. It is recommended that Miami Circle connect over GA 400 to either Canterbury Road or Burke Road; however, no specific traffic analysis was performed. It is recommended that an origin and destination study be performed as an initial step in determining the need for the connection and its impacts on Piedmont Road, Sidney Marcus Boulevard, and Lenox Road.

SA25 – Beltline

Participate in studying the best routes for the planned Beltline transit and trail to serve the Lindbergh MARTA station. This study recommends a direct connection to the Lindbergh Center MARTA station. This study should be performed under the leadership of Beltline Inc.

SA26 – Commuter Rail

Participate in studies and advocacy efforts to initiate commuter rail service between Gainesville, Buckhead, and points south.

SA27 – Connect Atlanta Plan

Participate in the City of Atlanta Comprehensive Transportation Plan, Connect Atlanta Plan.

9.3 Project Priority List

Projects, studies, and advocacy efforts associated with this plan should be addressed aggressively. The following schedule lists their recommended timing divided into three categories. The partnering agencies as described previously in this report should be held responsible for the execution of initial steps, such as feasibility studies, based on the time-table provided below. Partnering agencies should also help create a funding strategy, since certain funding sources are available to individual agencies.

- Near-term tasks should be considered when the Buckhead CID, BATMA and the City prepare the next Capital Project Appropriations for Fiscal Year 2009 and subsequent appropriations in 2010 through 2012. Near-term tasks are those started within the five year time frame.
- Short-term tasks should begin implementation between 2013 and 2018.
- Long-term tasks should begin implementation between 2019 and 2030.

The following project priority list is for the Piedmont Road improvements identified in this study.

For the purpose of this study, this list is independent from ongoing Buckhead projects and programs including Phase II of the Peachtree Road Complete Streets project. The projects were prioritized based on several factors including the following:

- Right-of-way constraints
- Cost
- Overall impact of improvement
- Ease and time sensitivity of implementation
- Community support

Near-term (2008-2012)

Near-term tasks should be considered when the Buckhead CID, BATMA and the City prepare the next Capital Project Appropriations for Fiscal Year 2009 and subsequent appropriations in 2010 through 2012. Near-term tasks are considered a five-year plan. Each of the studies and advocacy efforts as listed in Section 8.2 should be initiated during the near term.
Action Plan

Transit
- **T1** – Express Bus Service Enhancements
- **T2** – Activity Center Circulator Expansion
- **T4** – MARTA – Consolidate/Improve Bus Stops
- **T5** – Transit Signal Priority
- **T6** – Develop Uniform Bus Stop Standards
- **T7** – Queue Jumper Lanes

Pedestrian
- **P1** – Pedestrian Crossing Safety Improvements (Entire Corridor)
- **P3** – Pedestrian/Bicycle Bridge Over GA 400 (Northern Concourse)

Bicycle
- **B1** – Bicycle Routes/Lanes

Transportation Demand Management
- **TDM1** – Zipcar
- **TDM2** – TDM Education Campaign

Corridor
- **C1** – Signal Timing Plan
- **C2** – Signal Equipment Upgrades
- **C5** – Streetscape Specifications
- **C6** – Georgia Power Substation Screening

Intersection
- **I1** – Piedmont Road/Roswell Road/Habersham Road Triangle
- **I4A** – Piedmont Road at East Wesley Road – Interim

New Connections
- **NC1** – Buckhead Loop to Piedmont Center (Shuttle/Express Bus Only)

Regulatory
- **R1** – Buckhead CID Extension/Special Assessment District
- **R2** – Buckhead CID/BATMA DRI Review
- **R3** – Zoning Ordinance Amendments (SPI 9 and 12)
- **R4** – Impact Fee Credit Structure
- **R5** – GA 400 Toll Policy Changes (Ongoing by SRTA)
- **R6** – Side-Street Maximum Signal Timing Policy Changes

Short-term (2013-2018)

Short-term tasks should begin implementation between 2013 and 2018. These include the following:

Transit
- **T3** – MARTA – Increase Frequencies

Pedestrian
- **P2** – Sidewalk Improvements – Powers Ferry Road to Buckhead Loop

Transportation Demand Management
- **TDM3** – Congestion Monitoring Web Application

Corridor
- **C3** – Speed Limit Reductions
- **C4** – Way-Finding Signage
- **C7** – Buckhead Loop to Peachtree Road (Capacity Improvement)
- **C8** – Peachtree Road to Pharr Road (Capacity Improvement)
- **C9** – Pharr Road to Sidney Marcus Boulevard (Capacity Improvement)
- **C10** – Sidney Marcus Boulevard to Lindbergh Drive (Capacity Improvement)
- **C11** – Lindbergh Drive to Lambert Drive (Capacity Improvement)

Intersection
- **I2** – Piedmont Road at Buckhead Loop
- **I3** – Piedmont Road at Tower Place Drive
- **I4B** – Piedmont Road at East Wesley Road – Long Term
- **I5** – Miami Circle Relocation
- **I6** – Lindbergh Drive Consolidation/Main Street Signal

System
- **S1A** – I-85/GA 400 SB to NB Connection – Interim
- **S2** – I-85/GA 400 SB Merge Improvements

New Connections
- **NC2** – Piedmont Road to Roswell Road (To Occur With Redevelopment)
- **NC3** – Piedmont Road to Maple Drive (Two Connections, To Occur With Redevelopment)
Long-term (2019-2030)

Long-term tasks should begin implementation between 2019 and 2030. These include the following:

- System
 - S1B – I-85/GA 400 SB to NB Connection – Long Term
 - S3 – I-85/Lindbergh Drive HOV Ramps

9.4 Project Details

Table 24 provides each recommended project along with its priority level, cost, and partnering agencies most appropriate for the responsibility of implementation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit</td>
<td>T1 Express Bus Service Enhancements</td>
<td>Cap: $3,500,000 (Operating: $3,500,000)</td>
<td>Cut, GCT, GRTA</td>
</tr>
<tr>
<td></td>
<td>T2 Activity Center Circulator Expansion</td>
<td>Operating: $1,000,000</td>
<td>Buckhead CID, CoA, MARTA</td>
</tr>
<tr>
<td></td>
<td>T3 Conveyance Improvements for Ga 400</td>
<td>N/A</td>
<td>MARTA</td>
</tr>
<tr>
<td></td>
<td>T4 System Improvement Strategy</td>
<td>N/A</td>
<td>MARTA</td>
</tr>
<tr>
<td></td>
<td>T5 Pedestrian/Bicycle Bridge over SR 400 (Northern Concourse)</td>
<td>N/A</td>
<td>Buckhead CID, CoA, MARTA</td>
</tr>
<tr>
<td></td>
<td>P1 Pedestrian/Cycling Safety Improvements (Entire Corridor)</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>P2 Pedestrian/Bicycle Bridge over SR 400 (Southern Concourse)</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>B1 Bike Route/Lanes</td>
<td>N/A</td>
<td>CoA</td>
</tr>
<tr>
<td></td>
<td>TDMS Zipcar</td>
<td>N/A</td>
<td>Operating: $57,000/yr</td>
</tr>
<tr>
<td></td>
<td>TDMD TDM education campaign</td>
<td>N/A</td>
<td>Operating: $150,000/yr</td>
</tr>
<tr>
<td></td>
<td>C1 Signal Timing Plan</td>
<td>N/A</td>
<td>MARTA</td>
</tr>
<tr>
<td></td>
<td>C2 Signal Equipment Upgrades</td>
<td>N/A</td>
<td>Buckhead CID, GDOT</td>
</tr>
<tr>
<td></td>
<td>C3 Speed Limit Reductions</td>
<td>N/A</td>
<td>Marta, Georgia DOT</td>
</tr>
<tr>
<td></td>
<td>C4 Way-Finding Signage</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>C5 Streetscape Specifications</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>C6 Georgia Power Substation Screening</td>
<td>N/A</td>
<td>Georgia Power</td>
</tr>
<tr>
<td></td>
<td>I1 Piedmont Road/Roswell Road/Habersham Road Triangle</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>I2 Piedmont Road at Buckhead Loop</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>I3 Piedmont Road at Tower Place Drive</td>
<td>N/A</td>
<td>Property Owners</td>
</tr>
<tr>
<td></td>
<td>I4A Piedmont Road at East Wesley Road – Interim</td>
<td>N/A</td>
<td>Property Owners</td>
</tr>
<tr>
<td></td>
<td>I4B Piedmont Road at East Wesley Road – Long Term</td>
<td>N/A</td>
<td>Property Owners</td>
</tr>
<tr>
<td></td>
<td>I5 Miami Circle Relocation</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>I6 Lindbergh Drive Consolidation/Main Street Signal</td>
<td>N/A</td>
<td>Property Owners</td>
</tr>
<tr>
<td></td>
<td>S1A I-85/GA 400 SB to NB Connection – Interim</td>
<td>N/A</td>
<td>Sound $3,500,000, GDOT, SRTA</td>
</tr>
<tr>
<td></td>
<td>S1B I-85/GA 400 SB to NB Connection – Long Term</td>
<td>N/A</td>
<td>GDOT, SRTA</td>
</tr>
<tr>
<td></td>
<td>S2 I-85/GA 400 SB Merge Improvements</td>
<td>N/A</td>
<td>GDOT, SRTA</td>
</tr>
<tr>
<td></td>
<td>FI1 Piedmont Road/Roswell Road/Habersham Road Triangle – Long Term</td>
<td>N/A</td>
<td>CoA, GDOT, Property Owners</td>
</tr>
<tr>
<td></td>
<td>FI2 Miami Circle Extension of GA 400</td>
<td>N/A</td>
<td>CoA, GDOT, Property Owners</td>
</tr>
</tbody>
</table>

9.5 New Connections

<table>
<thead>
<tr>
<th>New Connections</th>
<th>Roadway</th>
<th>Intersection</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC1 Piedmont Loop to Piedmont Center (Shattuck Express Bus Loop)</td>
<td>N/A</td>
<td>$200,000</td>
</tr>
<tr>
<td>NC2 Piedmont Road to Roswell Road</td>
<td>N/A</td>
<td>$11,000,000, $13,000,000</td>
</tr>
<tr>
<td>NC3 Piedmont Road to Maple Drive</td>
<td>N/A</td>
<td>$11,000,000, $12,000,000</td>
</tr>
</tbody>
</table>

9.6 Long Term (2019-2030)

- System
 - S1B – I-85/GA 400 SB to NB Connection – Long Term
 - S3 – I-85/Lindbergh Drive HOV Ramps

9.7 Recommended Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>MARTA – Increase Frequencies</td>
<td>Cap: $9,000,000 (Operating: $8,300,000)</td>
</tr>
<tr>
<td>P2</td>
<td>Sidewalk Improvements - Donovans Ferry Road to Buckhead Loop</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 24 Project Priority List

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Transit</td>
<td>T1 Express Bus Service Enhancements</td>
<td>Cap: $3,500,000 (Operating: $3,500,000)</td>
<td>Cut, GCT, GRTA</td>
</tr>
<tr>
<td></td>
<td>T2 Activity Center Circulator Expansion</td>
<td>Operating: $1,000,000</td>
<td>Buckhead CID, CoA, MARTA</td>
</tr>
<tr>
<td></td>
<td>T3 Conveyance Improvements for Ga 400</td>
<td>N/A</td>
<td>MARTA</td>
</tr>
<tr>
<td></td>
<td>T4 System Improvement Strategy</td>
<td>N/A</td>
<td>MARTA</td>
</tr>
<tr>
<td></td>
<td>T5 Pedestrian/Bicycle Bridge over SR 400 (Northern Concourse)</td>
<td>N/A</td>
<td>Buckhead CID, CoA, MARTA</td>
</tr>
<tr>
<td></td>
<td>P1 Pedestrian/Cycling Safety Improvements (Entire Corridor)</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>P2 Pedestrian/Bicycle Bridge over SR 400 (Southern Concourse)</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>B1 Bike Route/Lanes</td>
<td>N/A</td>
<td>CoA</td>
</tr>
<tr>
<td></td>
<td>TDMS Zipcar</td>
<td>N/A</td>
<td>Operating: $57,000/yr</td>
</tr>
<tr>
<td></td>
<td>TDMD TDM education campaign</td>
<td>N/A</td>
<td>Operating: $150,000/yr</td>
</tr>
<tr>
<td></td>
<td>C1 Signal Timing Plan</td>
<td>N/A</td>
<td>MARTA</td>
</tr>
<tr>
<td></td>
<td>C2 Signal Equipment Upgrades</td>
<td>N/A</td>
<td>Buckhead CID, GDOT</td>
</tr>
<tr>
<td></td>
<td>C3 Speed Limit Reductions</td>
<td>N/A</td>
<td>Marta, Georgia DOT</td>
</tr>
<tr>
<td></td>
<td>C4 Way-Finding Signage</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>C5 Streetscape Specifications</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>C6 Georgia Power Substation Screening</td>
<td>N/A</td>
<td>Georgia Power</td>
</tr>
<tr>
<td></td>
<td>I1 Piedmont Road/Roswell Road/Habersham Road Triangle</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>I2 Piedmont Road at Buckhead Loop</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>I3 Piedmont Road at Tower Place Drive</td>
<td>N/A</td>
<td>Property Owners</td>
</tr>
<tr>
<td></td>
<td>I4A Piedmont Road at East Wesley Road – Interim</td>
<td>N/A</td>
<td>Property Owners</td>
</tr>
<tr>
<td></td>
<td>I4B Piedmont Road at East Wesley Road – Long Term</td>
<td>N/A</td>
<td>Property Owners</td>
</tr>
<tr>
<td></td>
<td>I5 Miami Circle Relocation</td>
<td>N/A</td>
<td>Buckhead CID, CoA, GDOT</td>
</tr>
<tr>
<td></td>
<td>I6 Lindbergh Drive Consolidation/Main Street Signal</td>
<td>N/A</td>
<td>Property Owners</td>
</tr>
<tr>
<td></td>
<td>S1A I-85/GA 400 SB to NB Connection – Interim</td>
<td>N/A</td>
<td>Sound $3,500,000, GDOT, SRTA</td>
</tr>
<tr>
<td></td>
<td>S1B I-85/GA 400 SB to NB Connection – Long Term</td>
<td>N/A</td>
<td>GDOT, SRTA</td>
</tr>
<tr>
<td></td>
<td>S2 I-85/GA 400 SB Merge Improvements</td>
<td>N/A</td>
<td>GDOT, SRTA</td>
</tr>
<tr>
<td></td>
<td>FI1 Piedmont Road/Roswell Road/Habersham Road Triangle – Long Term</td>
<td>N/A</td>
<td>CoA, GDOT, Property Owners</td>
</tr>
<tr>
<td></td>
<td>FI2 Miami Circle Extension of GA 400</td>
<td>N/A</td>
<td>CoA, GDOT, Property Owners</td>
</tr>
</tbody>
</table>

9.7 Recommended Projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>MARTA – Increase Frequencies</td>
<td>Cap: $9,000,000 (Operating: $8,300,000)</td>
</tr>
<tr>
<td>P2</td>
<td>Sidewalk Improvements - Donovans Ferry Road to Buckhead Loop</td>
<td>N/A</td>
</tr>
</tbody>
</table>
conclusion
10.0 Conclusion

To residents, workers, and visitors alike, the busy intersection of Piedmont and Peachtree Roads in Buckhead is considered the intersection of "Main and Main". Such heightened degree of significance, as Buckhead’s "Main Street", underscores the importance of this study. Early in the discussions regarding this study, references to Piedmont Road being a "workhorse" street compared to Peachtree Road's "show-horse" status were contradicted. Instead, it was agreed that Piedmont Road would be improved not just to function more efficiently, but to appeal to a broader audience of users so that it becomes a safe, secure, efficient, effective, convenient, attractive and enjoyable place to be.

That challenge has been met with a host of creative ideas that developed over the 12 months of discussions, meetings, presentations, analysis and brainstorming it took to prepare the Piedmont Area Transportation Study. The next challenge is to maintain momentum and aim for rapid implementation of some of the early action items while continuing to take the necessary steps to begin design work on a wide range of projects. In this way, the Buckhead community sits at the gateway to finding outside sources of funding once right-of-way is acquired and projects are designed and ready for implementation.